Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of f(x)=4-x^2,\at x=-1
tangent\:f(x)=4-x^{2},\at\:x=-1
integral of 1/(10x^7)
\int\:\frac{1}{10x^{7}}dx
y'=y(3-y)
y\prime\:=y(3-y)
integral of (cos(y)sin(x))
\int\:(\cos(y)\sin(x))dy
integral of (9sec^2(x))/(tan(x))
\int\:\frac{9\sec^{2}(x)}{\tan(x)}dx
limit as x approaches 2 of sqrt(x)+x
\lim\:_{x\to\:2}(\sqrt{x}+x)
integral of (pix^4)/(16)
\int\:\frac{πx^{4}}{16}dx
y^'+1/x y=-1/x y^2,y(1)=2
y^{\prime\:}+\frac{1}{x}y=-\frac{1}{x}y^{2},y(1)=2
derivative of log_{5}(4/(x^2sqrt(1-x)))
\frac{d}{dx}(\log_{5}(\frac{4}{x^{2}\sqrt{1-x}}))
integral of-4x^2e^{-3x}
\int\:-4x^{2}e^{-3x}dx
limit as x approaches 1 of (f(x))x^2-2x
\lim\:_{x\to\:1}((f(x))x^{2}-2x)
limit as h approaches 0 of h^2+5^h
\lim\:_{h\to\:0}(h^{2}+5^{h})
integral of e^{-7x}
\int\:e^{-7x}dx
limit as x approaches infinity of 1+3/x
\lim\:_{x\to\:\infty\:}(1+\frac{3}{x})
area 6x^2,x^2+2
area\:6x^{2},x^{2}+2
sum from n=2 to infinity of (1/3)^n
\sum\:_{n=2}^{\infty\:}(\frac{1}{3})^{n}
derivative of 5x^4-2x^3-3x+2
\frac{d}{dx}(5x^{4}-2x^{3}-3x+2)
y^{''}+8y^'+7y=0
y^{\prime\:\prime\:}+8y^{\prime\:}+7y=0
integral of sin(x)cos(x)sqrt(1-sin^4(x))
\int\:\sin(x)\cos(x)\sqrt{1-\sin^{4}(x)}dx
(\partial)/(\partial x)((3y)*(2x)^{-1})
\frac{\partial\:}{\partial\:x}((3y)\cdot\:(2x)^{-1})
parity f(x)=sin(tan(2x))
parity\:f(x)=\sin(\tan(2x))
derivative of 2(2x^5-3x+2)^8
derivative\:2(2x^{5}-3x+2)^{8}
integral of 3xy
\int\:3xy
integral of 1/((2-x)sqrt(1-x))
\int\:\frac{1}{(2-x)\sqrt{1-x}}dx
integral of (t+7)e^{2t+3}
\int\:(t+7)e^{2t+3}dt
derivative of sqrt(5)x+sqrt(6x)
\frac{d}{dx}(\sqrt{5}x+\sqrt{6x})
area y^2-7x=1,x-y=1
area\:y^{2}-7x=1,x-y=1
integral of 6e^5
\int\:6e^{5}dx
derivative of (x-1(x^2+x+1))
\frac{d}{dx}((x-1)(x^{2}+x+1))
derivative of-2ln(-x)
\frac{d}{dx}(-2\ln(-x))
taylor (sin(x))/x
taylor\:\frac{\sin(x)}{x}
limit as x approaches-6-of x^2+6
\lim\:_{x\to\:-6-}(x^{2}+6)
derivative of sqrt(7)x+sqrt(2x)
\frac{d}{dx}(\sqrt{7}x+\sqrt{2x})
derivative of 1+cos(6x)
\frac{d}{dx}(1+\cos(6x))
(x^2-1)y^'=xyln(y)
(x^{2}-1)y^{\prime\:}=xy\ln(y)
integral from 1 to infinity of x^{-4/3}
\int\:_{1}^{\infty\:}x^{-\frac{4}{3}}dx
(\partial)/(\partial x)(e^{-x^2-2y^2})
\frac{\partial\:}{\partial\:x}(e^{-x^{2}-2y^{2}})
integral of 8sec(x)(sec(x)-4tan(x))
\int\:8\sec(x)(\sec(x)-4\tan(x))dx
y^{''}+8y^'+4y=t
y^{\prime\:\prime\:}+8y^{\prime\:}+4y=t
(\partial)/(\partial y)(sin(z))
\frac{\partial\:}{\partial\:y}(\sin(z))
area 4sqrt(x+9),sqrt(144-x),-9,144
area\:4\sqrt{x+9},\sqrt{144-x},-9,144
derivative of 2/(x^3)-8/x
derivative\:\frac{2}{x^{3}}-\frac{8}{x}
derivative of y=((f(x))/(g(x)))^2
derivative\:y=(\frac{f(x)}{g(x)})^{2}
integral of x^4e^{2x}
\int\:x^{4}e^{2x}dx
integral of (2x+1)/((3x-1)(x^2+2x+2))
\int\:\frac{2x+1}{(3x-1)(x^{2}+2x+2)}dx
(\partial)/(\partial x)(4-2*(3x-y)^2)
\frac{\partial\:}{\partial\:x}(4-2\cdot\:(3x-y)^{2})
slope of y=-(-6x+6)^{1/2},x=-5
slope\:y=-(-6x+6)^{\frac{1}{2}},x=-5
d/(dv)(ae^v+b/v+c/(v^2))
\frac{d}{dv}(ae^{v}+\frac{b}{v}+\frac{c}{v^{2}})
xy^'-2y+y^2=0
xy^{\prime\:}-2y+y^{2}=0
y^{''}+2ky^'+k^4y=0
y^{\prime\:\prime\:}+2ky^{\prime\:}+k^{4}y=0
slope of (9,12),(-2,-17)
slope\:(9,12),(-2,-17)
integral of (x^2)/((x+1)(x+2)^2)
\int\:\frac{x^{2}}{(x+1)(x+2)^{2}}dx
integral of x^2e^{xy}
\int\:x^{2}e^{xy}dy
integral of e^{(-x)/3}
\int\:e^{\frac{-x}{3}}dx
integral from-2 to 3 of (27)/(x^4)
\int\:_{-2}^{3}\frac{27}{x^{4}}dx
xy^2y^'=y^3-1x^3
xy^{2}y^{\prime\:}=y^{3}-1x^{3}
(\partial)/(\partial y)((-x)/((x+y)^2))
\frac{\partial\:}{\partial\:y}(\frac{-x}{(x+y)^{2}})
integral from 0 to 1 of xsqrt(8-x^2)
\int\:_{0}^{1}x\sqrt{8-x^{2}}dx
(1+ln(x)+y/x)dx=(7-ln(x))dy
(1+\ln(x)+\frac{y}{x})dx=(7-\ln(x))dy
limit as x approaches-7 of sqrt(1/(x+7))
\lim\:_{x\to\:-7}(\sqrt{\frac{1}{x+7}})
laplacetransform [t]
laplacetransform\:[t]
derivative of ln(e^{6x})
\frac{d}{dx}(\ln(e^{6x}))
integral of (1/(sqrt(9-x^2)))
\int\:(\frac{1}{\sqrt{9-x^{2}}})dx
f^{''}(x)=(7+6x)^{e^{-5x}}
f^{\prime\:\prime\:}(x)=(7+6x)^{e^{-5x}}
integral of sqrt(x)(3-5x)
\int\:\sqrt{x}(3-5x)dx
derivative of cos^3(e^{-x})
\frac{d}{dx}(\cos^{3}(e^{-x}))
integral of cos((mpix)/3)
\int\:\cos(\frac{mπx}{3})dx
(\partial)/(\partial y)(2ycos(x))
\frac{\partial\:}{\partial\:y}(2y\cos(x))
y^{''}+2y^'+2y=sin(sqrt(2)x)
y^{\prime\:\prime\:}+2y^{\prime\:}+2y=\sin(\sqrt{2}x)
limit as x approaches 0+of e^{-5/x}
\lim\:_{x\to\:0+}(e^{-\frac{5}{x}})
integral of 1/(sqrt(-x^2+14x+50))
\int\:\frac{1}{\sqrt{-x^{2}+14x+50}}dx
derivative of sqrt(1+sin^2(e^{5x))}
derivative\:\sqrt{1+\sin^{2}(e^{5x})}
derivative of ln(x+sqrt(x^2+3))
\frac{d}{dx}(\ln(x+\sqrt{x^{2}+3}))
2x(1+y)dx-ydy=0
2x(1+y)dx-ydy=0
derivative of x^8ln(x)
derivative\:x^{8}\ln(x)
f(x)=e^{3sqrt(x)}
f(x)=e^{3\sqrt{x}}
f(x)=3^{xln(x)}
f(x)=3^{x\ln(x)}
laplacetransform e^{4t}sin(2t)
laplacetransform\:e^{4t}\sin(2t)
d/(dy)(y/(t^2+y^2))
\frac{d}{dy}(\frac{y}{t^{2}+y^{2}})
(dr)/(dt)+2tr-r=0,r(0)=6
\frac{dr}{dt}+2tr-r=0,r(0)=6
(\partial)/(\partial y)(sin(3x-4y))
\frac{\partial\:}{\partial\:y}(\sin(3x-4y))
integral of 1/(x^2+5)
\int\:\frac{1}{x^{2}+5}dx
limit as x approaches 2 of (-2)/(x(x-2))
\lim\:_{x\to\:2}(\frac{-2}{x(x-2)})
derivative of f(x)=(e^x)/(4x+1)
derivative\:f(x)=\frac{e^{x}}{4x+1}
integral of (3x^2+2)/((x^3+2x)^2)
\int\:\frac{3x^{2}+2}{(x^{3}+2x)^{2}}dx
tangent of y=(2x)/(x+1),(1,1)
tangent\:y=\frac{2x}{x+1},(1,1)
derivative of (5x/(x+1))
\frac{d}{dx}(\frac{5x}{x+1})
limit as x approaches+(-1) of (sin(x))/x
\lim\:_{x\to\:+(-1)}(\frac{\sin(x)}{x})
(dy)/(dx)=y^3
\frac{dy}{dx}=y^{3}
tangent of f(x)= x/(9-sqrt(x))
tangent\:f(x)=\frac{x}{9-\sqrt{x}}
sum from n=1 to infinity of (-1/3)^{n-1}
\sum\:_{n=1}^{\infty\:}(-\frac{1}{3})^{n-1}
tangent of x^3sqrt(x^3+3)
tangent\:x^{3}\sqrt{x^{3}+3}
integral from 1 to infinity of x/(4+x^2)
\int\:_{1}^{\infty\:}\frac{x}{4+x^{2}}dx
(\partial)/(\partial x)(ln(y-2x))
\frac{\partial\:}{\partial\:x}(\ln(y-2x))
(x+y)^2dx+(2xy+x^2-1)dy=0
(x+y)^{2}dx+(2xy+x^{2}-1)dy=0
derivative of f(x)=2^{50}
derivative\:f(x)=2^{50}
integral of x(1-x)^7
\int\:x(1-x)^{7}dx
tangent of f(x)=3x^3+3x^2-11x-1
tangent\:f(x)=3x^{3}+3x^{2}-11x-1
y^{''}+9y=3csc^2(3t)
y^{\prime\:\prime\:}+9y=3\csc^{2}(3t)
integral of sinh(2x)
\int\:\sinh(2x)dx
1
..
47
48
49
50
51
..
2459