Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
periodicity of y=-4sin(6x+pi/2)
periodicity\:y=-4\sin(6x+\frac{π}{2})
midpoint (-1/4 ,-1/7),(3/4 , 6/7)
midpoint\:(-\frac{1}{4},-\frac{1}{7}),(\frac{3}{4},\frac{6}{7})
inverse of y=-8/7 x+8
inverse\:y=-\frac{8}{7}x+8
asymptotes of f(x)=(-x^3-5)/(x^2-4)
asymptotes\:f(x)=\frac{-x^{3}-5}{x^{2}-4}
range of x/(6x-5)
range\:\frac{x}{6x-5}
inflection x^3+2x^2+x-7
inflection\:x^{3}+2x^{2}+x-7
inverse of f(x)= 1/5 x-2
inverse\:f(x)=\frac{1}{5}x-2
domain of f(x)=5x^2-2x+2
domain\:f(x)=5x^{2}-2x+2
asymptotes of 1/(x+3)
asymptotes\:\frac{1}{x+3}
slope of-4/3 9
slope\:-\frac{4}{3}9
asymptotes of (x-9)/(sqrt(4x^2+3x+2))
asymptotes\:\frac{x-9}{\sqrt{4x^{2}+3x+2}}
domain of 9x-4
domain\:9x-4
extreme f(x)=x^3-12x+2
extreme\:f(x)=x^{3}-12x+2
parity f(x)= 1/(x^2+3)
parity\:f(x)=\frac{1}{x^{2}+3}
perpendicular y= 1/3 x-2
perpendicular\:y=\frac{1}{3}x-2
domain of g(x)=(sqrt(x-2))/(x-7)
domain\:g(x)=\frac{\sqrt{x-2}}{x-7}
periodicity of f(x)=2sin(pi/2 x)
periodicity\:f(x)=2\sin(\frac{π}{2}x)
domain of x/(1-x)
domain\:\frac{x}{1-x}
domain of x-8
domain\:x-8
inverse of f(x)=50-4x
inverse\:f(x)=50-4x
inverse of ln(x+9)
inverse\:\ln(x+9)
asymptotes of (x^3)/(x^2-9)
asymptotes\:\frac{x^{3}}{x^{2}-9}
line (-6,-5),(-4,-4)
line\:(-6,-5),(-4,-4)
inverse of f(x)=(5x+4)/(x+5)
inverse\:f(x)=\frac{5x+4}{x+5}
domain of-1-1/(x^2-4)
domain\:-1-\frac{1}{x^{2}-4}
range of f(x)= 1/(x+3)
range\:f(x)=\frac{1}{x+3}
slope ofintercept 6x-7y-14=0
slopeintercept\:6x-7y-14=0
inverse of f(x)= 1/(x+8)
inverse\:f(x)=\frac{1}{x+8}
domain of f(x)=2x-74
domain\:f(x)=2x-74
extreme f(x)=x^4-4x^3+9
extreme\:f(x)=x^{4}-4x^{3}+9
inverse of-x^2+1
inverse\:-x^{2}+1
critical f(x)=4x^3+7x^2-20x+9
critical\:f(x)=4x^{3}+7x^{2}-20x+9
inflection f(x)= 7/(x-7)
inflection\:f(x)=\frac{7}{x-7}
domain of 2x^2-8
domain\:2x^{2}-8
range of-x^2-5
range\:-x^{2}-5
midpoint (10,5),(4,-1)
midpoint\:(10,5),(4,-1)
critical f(x)=1-5x
critical\:f(x)=1-5x
domain of f(x)=(1-e^{x^2})/(1-e^{1-x^2)}
domain\:f(x)=\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}}
y=x^2-6x+8
y=x^{2}-6x+8
inverse of 10x-10
inverse\:10x-10
parity f(x)=-4x^5+3x^2
parity\:f(x)=-4x^{5}+3x^{2}
line (330,0),(445,560)
line\:(330,0),(445,560)
slope of 3x+3y=18
slope\:3x+3y=18
domain of (2x+1)/(3x)
domain\:\frac{2x+1}{3x}
intercepts of f(x)=-x^2+5x+6
intercepts\:f(x)=-x^{2}+5x+6
distance (1,3),(3,1)
distance\:(1,3),(3,1)
domain of 1/(x^3-x)
domain\:\frac{1}{x^{3}-x}
asymptotes of f(x)=(x^2)/(2x^2-2)
asymptotes\:f(x)=\frac{x^{2}}{2x^{2}-2}
perpendicular 2x+5y=10
perpendicular\:2x+5y=10
domain of-x^2+6x-5
domain\:-x^{2}+6x-5
perpendicular x+y=-1
perpendicular\:x+y=-1
inverse of f(x)=9(x-2)
inverse\:f(x)=9(x-2)
inverse of f(x)=1+1/(x-3)
inverse\:f(x)=1+\frac{1}{x-3}
domain of (x+1)/(x-1)
domain\:\frac{x+1}{x-1}
inverse of f(x)=1.7sqrt(-(x-7.35))-3.6
inverse\:f(x)=1.7\sqrt{-(x-7.35)}-3.6
domain of 5(x/(x+2))-2
domain\:5(\frac{x}{x+2})-2
domain of f(x)=ln(1/x-1/(1-x))
domain\:f(x)=\ln(\frac{1}{x}-\frac{1}{1-x})
slope ofintercept 7x+2y=14
slopeintercept\:7x+2y=14
range of xsqrt(36-x)
range\:x\sqrt{36-x}
asymptotes of f(x)= x/(x(x+7))
asymptotes\:f(x)=\frac{x}{x(x+7)}
intercepts of f(x)=x^2+22x+117
intercepts\:f(x)=x^{2}+22x+117
line (-4.93,0.87),(-5.55,0.9)
line\:(-4.93,0.87),(-5.55,0.9)
line (2,2),(3,6)
line\:(2,2),(3,6)
extreme x-8/(x^2)
extreme\:x-\frac{8}{x^{2}}
range of f(x)=-e^{-x}
range\:f(x)=-e^{-x}
inverse of f(x)=a^x
inverse\:f(x)=a^{x}
extreme f(x)=x+(16)/x
extreme\:f(x)=x+\frac{16}{x}
inverse of y=ln(3x)
inverse\:y=\ln(3x)
domain of f(x)=(sqrt(2-x))/(x^2+4x)
domain\:f(x)=\frac{\sqrt{2-x}}{x^{2}+4x}
f(x)=ln(x)
f(x)=\ln(x)
shift f(x)=6cos(3x+pi/2)
shift\:f(x)=6\cos(3x+\frac{π}{2})
intercepts of f(x)=0.55*x-2.8e^5
intercepts\:f(x)=0.55\cdot\:x-2.8e^{5}
asymptotes of f(x)=2^{x/2}
asymptotes\:f(x)=2^{\frac{x}{2}}
line (0,4),(-3,0)
line\:(0,4),(-3,0)
slope of 2y=4x+5
slope\:2y=4x+5
amplitude of 2cos(3x+pi/2)
amplitude\:2\cos(3x+\frac{π}{2})
range of f(x)=|x|-4
range\:f(x)=\left|x\right|-4
domain of f(x)=(\sqrt[3]{x-3})/(x^3-3)
domain\:f(x)=\frac{\sqrt[3]{x-3}}{x^{3}-3}
monotone 9x^{(2)}-x^3-3
monotone\:9x^{(2)}-x^{3}-3
inverse of f(x)=((4x-1))/((2x+3))
inverse\:f(x)=\frac{(4x-1)}{(2x+3)}
inverse of (x-4)^3
inverse\:(x-4)^{3}
extreme 60x^2-20x^3
extreme\:60x^{2}-20x^{3}
domain of f(x)=sqrt((1+2x)/x)
domain\:f(x)=\sqrt{\frac{1+2x}{x}}
domain of sqrt(4-z^2)
domain\:\sqrt{4-z^{2}}
domain of (x^3+7x^2+12x)/(x^3+x^2-2x)
domain\:\frac{x^{3}+7x^{2}+12x}{x^{3}+x^{2}-2x}
inverse of f(x)=(x+16)^3
inverse\:f(x)=(x+16)^{3}
asymptotes of f(x)=(x^2-4)/(x-1)
asymptotes\:f(x)=\frac{x^{2}-4}{x-1}
domain of f(x)= 1/(x+4)+1
domain\:f(x)=\frac{1}{x+4}+1
intercepts of y=x^2+x+1
intercepts\:y=x^{2}+x+1
inverse of sqrt(x-1)-4
inverse\:\sqrt{x-1}-4
y=(1-x)^2
y=(1-x)^{2}
domain of (4x-3)/(6-3x)
domain\:\frac{4x-3}{6-3x}
asymptotes of-1/(x-4)
asymptotes\:-\frac{1}{x-4}
inverse of log_{3}(x-9)
inverse\:\log_{3}(x-9)
asymptotes of f(x)=(x^2+9)/(x^2-9)
asymptotes\:f(x)=\frac{x^{2}+9}{x^{2}-9}
symmetry x^5
symmetry\:x^{5}
inverse of f(x)=(x+2)^{1/5}+3
inverse\:f(x)=(x+2)^{\frac{1}{5}}+3
asymptotes of f(x)=e^{x-3}+4
asymptotes\:f(x)=e^{x-3}+4
range of sqrt(x^2-4)
range\:\sqrt{x^{2}-4}
asymptotes of f(x)=(x^2-x-56)/(2x-16)
asymptotes\:f(x)=\frac{x^{2}-x-56}{2x-16}
1
2
3
4
5
6
7
..
1324