Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of e^xsin(8x)
\frac{d}{dx}(e^{x}\sin(8x))
laplacetransform 1-2e^{-4t}
laplacetransform\:1-2e^{-4t}
integral of 1/(x-x^2+2)
\int\:\frac{1}{x-x^{2}+2}dx
integral of (2+x)/x
\int\:\frac{2+x}{x}dx
derivative of e^{aarccos(x})
\frac{d}{dx}(e^{a\arccos(x)})
area 2cos(9x),2-2cos(9x),[0, pi/9 ]
area\:2\cos(9x),2-2\cos(9x),[0,\frac{π}{9}]
integral of 6arctan(sqrt(x))
\int\:6\arctan(\sqrt{x})dx
limit as x approaches 8+of 1/(|8-x|)
\lim\:_{x\to\:8+}(\frac{1}{\left|8-x\right|})
taylor sin(8x)
taylor\:\sin(8x)
(dy)/(dx)=b-ay
\frac{dy}{dx}=b-ay
y^'=x(1+y^2)
y^{\prime\:}=x(1+y^{2})
tangent of y=t^3-36t+4,(6,4)
tangent\:y=t^{3}-36t+4,(6,4)
limit as x approaches 0-of e^{4/(x^5)}
\lim\:_{x\to\:0-}(e^{\frac{4}{x^{5}}})
integral of (x^2-6)/((x+2)(2x-1))
\int\:\frac{x^{2}-6}{(x+2)(2x-1)}dx
area y=x^2,y=sqrt(6+x)
area\:y=x^{2},y=\sqrt{6+x}
derivative of log_{e}(4x)
\frac{d}{dx}(\log_{e}(4x))
derivative of (8(4x^4+5)^3)
\frac{d}{dx}((8(4x)^{4}+5)^{3})
(\partial)/(\partial y)(arctan(x)y)
\frac{\partial\:}{\partial\:y}(\arctan(x)y)
tangent of 4-ln(x)
tangent\:4-\ln(x)
y^{''}+4y^'+40y=40cos(8t)
y^{\prime\:\prime\:}+4y^{\prime\:}+40y=40\cos(8t)
(\partial)/(\partial x)(1/(3x))
\frac{\partial\:}{\partial\:x}(\frac{1}{3x})
integral of 1+4x
\int\:1+4xdx
derivative of sec^2(9x)
\frac{d}{dx}(\sec^{2}(9x))
(\partial)/(\partial x)(1/(2x)arctan(y/x))
\frac{\partial\:}{\partial\:x}(\frac{1}{2x}\arctan(\frac{y}{x}))
integral of 1/(\sqrt[3]{x)-x}
\int\:\frac{1}{\sqrt[3]{x}-x}dx
tangent of (8x^2+4x+4)/(sqrt(4))
tangent\:\frac{8x^{2}+4x+4}{\sqrt{4}}
integral of (e^x+5)
\int\:(e^{x}+5)dx
limit as x approaches 3 of 9-x^2
\lim\:_{x\to\:3}(9-x^{2})
limit as x approaches 0 of (ln(x))^2
\lim\:_{x\to\:0}((\ln(x))^{2})
limit as x approaches-1+of 1/(x^2+1)
\lim\:_{x\to\:-1+}(\frac{1}{x^{2}+1})
integral of (6x^2-5x-1)
\int\:(6x^{2}-5x-1)dx
limit as x approaches infinity of i/n
\lim\:_{x\to\:\infty\:}(\frac{i}{n})
(dy}{dx}-y-\frac{y^2)/4 =0
\frac{dy}{dx}-y-\frac{y^{2}}{4}=0
integral of (2x+8x^2)
\int\:(2x+8x^{2})dx
derivative of y/(x^2)
\frac{d}{dx}(\frac{y}{x^{2}})
area y=x^2-4,y=0
area\:y=x^{2}-4,y=0
y^{''}-6y^'-8y=0
y^{\prime\:\prime\:}-6y^{\prime\:}-8y=0
derivative of sqrt(x)+1/(sqrt(x))
derivative\:\sqrt{x}+\frac{1}{\sqrt{x}}
(\partial)/(\partial x)(5x^4+2xy^2+1)
\frac{\partial\:}{\partial\:x}(5x^{4}+2xy^{2}+1)
d/(dy)((1/(y^2)-5/(y^4))(y+7y^3))
\frac{d}{dy}((\frac{1}{y^{2}}-\frac{5}{y^{4}})(y+7y^{3}))
area x^2-3x,2x+6
area\:x^{2}-3x,2x+6
(\partial)/(\partial z)(x^2y-3xz+5y+7z)
\frac{\partial\:}{\partial\:z}(x^{2}y-3xz+5y+7z)
derivative of 20sin(x)
\frac{d}{dx}(20\sin(x))
integral of-(10)/(x^{11)}
\int\:-\frac{10}{x^{11}}dx
(\partial)/(\partial x)((y+x)/(y+z))
\frac{\partial\:}{\partial\:x}(\frac{y+x}{y+z})
(\partial)/(\partial x)(ln(x)-2)
\frac{\partial\:}{\partial\:x}(\ln(x)-2)
limit as x approaches 1 of (2x)/(x^2+x)
\lim\:_{x\to\:1}(\frac{2x}{x^{2}+x})
(\partial)/(\partial y)(-xy)
\frac{\partial\:}{\partial\:y}(-xy)
derivative of (2x^2+1^4)
\frac{d}{dx}((2x^{2}+1)^{4})
(d^2)/(dx^2)(e^{-x})
\frac{d^{2}}{dx^{2}}(e^{-x})
y^'=e^{2x-1}*y^2
y^{\prime\:}=e^{2x-1}\cdot\:y^{2}
integral from 0 to 2 of 2x^2
\int\:_{0}^{2}2x^{2}dx
derivative of sqrt(1-2x^2)
\frac{d}{dx}(\sqrt{1-2x^{2}})
derivative of (sqrt(x)/(x^3+1))
\frac{d}{dx}(\frac{\sqrt{x}}{x^{3}+1})
limit as x approaches 2+of 2sqrt(x-2)
\lim\:_{x\to\:2+}(2\sqrt{x-2})
tangent of y=sin(sin(x)),(pi,0)
tangent\:y=\sin(\sin(x)),(π,0)
derivative of sin(x^2-4)
\frac{d}{dx}(\sin(x^{2}-4))
(\partial)/(\partial u)((u^2v-v^3)^5)
\frac{\partial\:}{\partial\:u}((u^{2}v-v^{3})^{5})
integral of xysin(z)
\int\:xy\sin(z)dz
tangent of y=x^{-1/7},(1,1)
tangent\:y=x^{-\frac{1}{7}},(1,1)
(\partial)/(\partial x)(x^2+2xy+2y^2-6x+6y)
\frac{\partial\:}{\partial\:x}(x^{2}+2xy+2y^{2}-6x+6y)
derivative of (x^2+3(x^2-3)x^2)
\frac{d}{dx}((x^{2}+3)(x^{2}-3)x^{2})
derivative of-2x^{-3}
\frac{d}{dx}(-2x^{-3})
g'(x)
g\prime\:(x)
integral of-6/x
\int\:-\frac{6}{x}dx
limit as x approaches 0-of arctan(1/x)
\lim\:_{x\to\:0-}(\arctan(\frac{1}{x}))
(\partial)/(\partial x)(x^2+4y)
\frac{\partial\:}{\partial\:x}(x^{2}+4y)
integral from 0 to P of 1/(M-P)
\int\:_{0}^{P}\frac{1}{M-P}dP
slope ofintercept (1)(0.3)
slopeintercept\:(1)(0.3)
integral from-1 to 1 of x^3(1+x^4)^3
\int\:_{-1}^{1}x^{3}(1+x^{4})^{3}dx
tangent of f(x)=8+5x^2-2x^3,(1,11)
tangent\:f(x)=8+5x^{2}-2x^{3},(1,11)
tangent of f(x)= 4/x ,(4,1)
tangent\:f(x)=\frac{4}{x},(4,1)
integral from 0 to ln(3) of 2(3-xe^x)
\int\:_{0}^{\ln(3)}2(3-xe^{x})dx
derivative of x^4+x^3+x^2+x+1
\frac{d}{dx}(x^{4}+x^{3}+x^{2}+x+1)
integral of x3^{x^2}
\int\:x3^{x^{2}}dx
slope of f(x)=2-4/x
slope\:f(x)=2-\frac{4}{x}
integral of 4sin^2(2x)
\int\:4\sin^{2}(2x)dx
derivative of ((x^2-2x)/(x+1))
\frac{d}{dx}(\frac{(x^{2}-2x)}{x+1})
(dy)/(dx)=e^ycos(2x)
\frac{dy}{dx}=e^{y}\cos(2x)
f(t)=2cos(t)
f(t)=2\cos(t)
area x=-2,x=1,y=3x,y=x^2-4
area\:x=-2,x=1,y=3x,y=x^{2}-4
y^{''}+y=5csc^2(t)
y^{\prime\:\prime\:}+y=5\csc^{2}(t)
derivative of f(x)=sqrt(8x^{10)+6x^6}
derivative\:f(x)=\sqrt{8x^{10}+6x^{6}}
integral of 1/(x^2)e^{1/x}
\int\:\frac{1}{x^{2}}e^{\frac{1}{x}}dx
y^'+y=-x^4
y^{\prime\:}+y=-x^{4}
(\partial)/(\partial y)(x+y/z)
\frac{\partial\:}{\partial\:y}(x+\frac{y}{z})
integral of 7xe^{6x}
\int\:7xe^{6x}dx
tangent of y=2x^2+1,(3,19)
tangent\:y=2x^{2}+1,(3,19)
tangent of f(x)=(1+2x)^2,\at x=4
tangent\:f(x)=(1+2x)^{2},\at\:x=4
derivative of (x^3)/(2-x^2)
derivative\:\frac{x^{3}}{2-x^{2}}
(sin^4(x))^'
(\sin^{4}(x))^{\prime\:}
inverse oflaplace 2/((s+1)^3)
inverselaplace\:\frac{2}{(s+1)^{3}}
derivative of xe^{y/x}
\frac{d}{dx}(xe^{\frac{y}{x}})
limit as x approaches 1 of (1-x)^2+2
\lim\:_{x\to\:1}((1-x)^{2}+2)
derivative of (2160/(x^2))
\frac{d}{dx}(\frac{2160}{x^{2}})
limit as x approaches infinity of 4/0
\lim\:_{x\to\:\infty\:}(\frac{4}{0})
integral from 0 to 4 of x^2(0.5-0.125x)
\int\:_{0}^{4}x^{2}(0.5-0.125x)dx
derivative of tan(6x^2+3)
\frac{d}{dx}(\tan(6x^{2}+3))
integral of e^{3x}cos(x/3)
\int\:e^{3x}\cos(\frac{x}{3})dx
derivative of 4tan(θ)
derivative\:4\tan(θ)
1
..
100
101
102
103
104
..
2459