Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 3+of 1/(x-3)
\lim\:_{x\to\:3+}(\frac{1}{x-3})
integral from-infinity to 0 of 1/(5-3x)
\int\:_{-\infty\:}^{0}\frac{1}{5-3x}dx
y^'+ytan(t)=(tan(t))/(cos(t))
y^{\prime\:}+y\tan(t)=\frac{\tan(t)}{\cos(t)}
integral of x^3In(x)
\int\:x^{3}In(x)dx
tangent of e^t+3,\at t=0
tangent\:e^{t}+3,\at\:t=0
y^{''}+4y=sin(t)
y^{\prime\:\prime\:}+4y=\sin(t)
taylor x^{-2},6
taylor\:x^{-2},6
area y^2=x^3,y^2=x
area\:y^{2}=x^{3},y^{2}=x
integral of (-9x^2+2)/(x^3+9x)
\int\:\frac{-9x^{2}+2}{x^{3}+9x}dx
integral of 1/(x^2sqrt(x^2+49))
\int\:\frac{1}{x^{2}\sqrt{x^{2}+49}}dx
derivative of 2/((1-1/3 x^3+1^2))
\frac{d}{dx}(\frac{2}{(1-\frac{1}{3}x^{3}+1)^{2}})
derivative of 5x^2-2x-1
derivative\:5x^{2}-2x-1
integral of (x^2)/(x^4+10x^2+9)
\int\:\frac{x^{2}}{x^{4}+10x^{2}+9}dx
y^{''}+4y^'+4y=e^{-2x}ln(x)
y^{\prime\:\prime\:}+4y^{\prime\:}+4y=e^{-2x}\ln(x)
derivative of f(x)= 1/(7-x)
derivative\:f(x)=\frac{1}{7-x}
derivative of h(sqrt(x))
\frac{d}{dx}(h(\sqrt{x}))
derivative of f(x)= 9/(sqrt(x))
derivative\:f(x)=\frac{9}{\sqrt{x}}
(dy)/(dx)= 1/6 sqrt(y)cos^2(sqrt(y))
\frac{dy}{dx}=\frac{1}{6}\sqrt{y}\cos^{2}(\sqrt{y})
integral of 11(tan(x))(ln(cos(x)))
\int\:11(\tan(x))(\ln(\cos(x)))dx
inverse oflaplace (1/7)/(s^2+19980/7)
inverselaplace\:\frac{\frac{1}{7}}{s^{2}+\frac{19980}{7}}
integral of t^{-1/2}(t^4+2t^2-1)
\int\:t^{-\frac{1}{2}}(t^{4}+2t^{2}-1)dt
integral of sin(s)
\int\:\sin(s)ds
laplacetransform-4t^2+16t+9
laplacetransform\:-4t^{2}+16t+9
(\partial)/(\partial x)(4x(2+y)^{-1})
\frac{\partial\:}{\partial\:x}(4x(2+y)^{-1})
tangent of f(x)= x/(1+x^2),\at x=2
tangent\:f(x)=\frac{x}{1+x^{2}},\at\:x=2
integral of x/(x-10)
\int\:\frac{x}{x-10}dx
area 9.86x^2,4.92x-x^2
area\:9.86x^{2},4.92x-x^{2}
(\partial)/(\partial t)(t^3)
\frac{\partial\:}{\partial\:t}(t^{3})
derivative of 5-6/x
derivative\:5-\frac{6}{x}
area sqrt(x)+2,0,1,4
area\:\sqrt{x}+2,0,1,4
derivative of e^{z/(z-2)}
derivative\:e^{\frac{z}{z-2}}
normal of f(x)=4x^2+7,(-3,43)
normal\:f(x)=4x^{2}+7,(-3,43)
81y^{''}-16y=0
81y^{\prime\:\prime\:}-16y=0
limit as x approaches 7 of 0
\lim\:_{x\to\:7}(0)
integral from 0 to 5 of x^2-5x
\int\:_{0}^{5}x^{2}-5xdx
(1+x)y^'+2y=(sin(x))/(1+x)
(1+x)y^{\prime\:}+2y=\frac{\sin(x)}{1+x}
integral of sin(5θ)sin(θ)
\int\:\sin(5θ)\sin(θ)dθ
(\partial)/(\partial x)(9xe^{4xy})
\frac{\partial\:}{\partial\:x}(9xe^{4xy})
(\partial}{\partial x}(\frac{x+y)/2)
\frac{\partial\:}{\partial\:x}(\frac{x+y}{2})
inverse oflaplace 3/((s+1)^2)
inverselaplace\:\frac{3}{(s+1)^{2}}
sum from n=1 to infinity of (4^n)/(2^n)
\sum\:_{n=1}^{\infty\:}\frac{4^{n}}{2^{n}}
slope of xy-3y^2=8,(14,4)
slope\:xy-3y^{2}=8,(14,4)
integral of sqrt(x)e^{-sqrt(x)}
\int\:\sqrt{x}e^{-\sqrt{x}}dx
derivative of (sqrt(2x)/(ln(x)))
\frac{d}{dx}(\frac{\sqrt{2x}}{\ln(x)})
derivative of (x^3/(1-x^3))
\frac{d}{dx}(\frac{x^{3}}{1-x^{3}})
(\partial)/(\partial x)(x+e^z+y)
\frac{\partial\:}{\partial\:x}(x+e^{z}+y)
integral of 4sin(2x)-3cos(3x)
\int\:4\sin(2x)-3\cos(3x)dx
normal of f(x)=x^4+5x-2,(1,4)
normal\:f(x)=x^{4}+5x-2,(1,4)
integral of (e^{4sqrt(r)})/(sqrt(r))
\int\:\frac{e^{4\sqrt{r}}}{\sqrt{r}}dr
limit as x approaches-3-of (x+4)/(x+3)
\lim\:_{x\to\:-3-}(\frac{x+4}{x+3})
integral of 1/(7-6x)
\int\:\frac{1}{7-6x}dx
limit as x approaches 5-of (x+1)/(x-5)
\lim\:_{x\to\:5-}(\frac{x+1}{x-5})
f(x)=-cos(x)
f(x)=-\cos(x)
derivative of x(2x+1^3)
\frac{d}{dx}(x(2x+1)^{3})
tangent of f(x)=(4x^2-3x)^2,\at x=1
tangent\:f(x)=(4x^{2}-3x)^{2},\at\:x=1
integral of (x^2+20x-4)/(x^3-4x)
\int\:\frac{x^{2}+20x-4}{x^{3}-4x}dx
(\partial)/(\partial z)(xy^2e^{-xz})
\frac{\partial\:}{\partial\:z}(xy^{2}e^{-xz})
(12x^2-20y^2)dx+(-20xy+36x^{-1}y^3)dy=0
(12x^{2}-20y^{2})dx+(-20xy+36x^{-1}y^{3})dy=0
integral of e^{sqrt(x)}
\int\:e^{\sqrt{x}}dx
integral of (x^2)/(sqrt(x+2))
\int\:\frac{x^{2}}{\sqrt{x+2}}dx
normal of y=5x^3+4x^2-6,(1,3)
normal\:y=5x^{3}+4x^{2}-6,(1,3)
integral of e^{-2x}*sin(x)
\int\:e^{-2x}\cdot\:\sin(x)dx
limit as x approaches 2 of (-2)^3
\lim\:_{x\to\:2}((-2)^{3})
(\partial)/(\partial x)((xy)/((x+y)))
\frac{\partial\:}{\partial\:x}(\frac{xy}{(x+y)})
derivative of-1/(1+x^2)
\frac{d}{dx}(-\frac{1}{1+x^{2}})
d/(dy)(4y^2)
\frac{d}{dy}(4y^{2})
maclaurin ln(x+sqrt(x^2-1))
maclaurin\:\ln(x+\sqrt{x^{2}-1})
derivative of sqrt(6x+6x^2)
\frac{d}{dx}(\sqrt{6x+6x^{2}})
(dv)/(dt)=0.025*7-v/(2000),v(0)=100
\frac{dv}{dt}=0.025\cdot\:7-\frac{v}{2000},v(0)=100
integral from 4 to 10 of 0.13x
\int\:_{4}^{10}0.13xdx
integral of 7-x
\int\:7-xdx
integral of 3e^{2x}
\int\:3e^{2x}dx
(\partial)/(\partial y)(x^2y+xy^3)
\frac{\partial\:}{\partial\:y}(x^{2}y+xy^{3})
(\partial)/(\partial x)(cos(x)cos(y))
\frac{\partial\:}{\partial\:x}(\cos(x)\cos(y))
(dx)/(dt)=(457.8-7x)/(2180)
\frac{dx}{dt}=\frac{457.8-7x}{2180}
derivative of (1-e^{x^3})^5
derivative\:(1-e^{x^{3}})^{5}
limit as x approaches 1-of x^2-2
\lim\:_{x\to\:1-}(x^{2}-2)
tangent of y=(x^2-1)/(x^2+x+1),(1,0)
tangent\:y=\frac{x^{2}-1}{x^{2}+x+1},(1,0)
y^{''}+4y^'+5y=cos(2x)
y^{\prime\:\prime\:}+4y^{\prime\:}+5y=\cos(2x)
inverse oflaplace 1/((x^2+1)*x)
inverselaplace\:\frac{1}{(x^{2}+1)\cdot\:x}
integral of xsin(1/4 x)
\int\:x\sin(\frac{1}{4}x)dx
integral of 3x^2\sqrt[3]{2x^3+5}
\int\:3x^{2}\sqrt[3]{2x^{3}+5}dx
(\partial)/(\partial s)(3sqrt(s^2+t^2))
\frac{\partial\:}{\partial\:s}(3\sqrt{s^{2}+t^{2}})
domain of f(x)=(x^4+1)^7
domain\:f(x)=(x^{4}+1)^{7}
(dy)/(dx)=x-y,y(0)=2
\frac{dy}{dx}=x-y,y(0)=2
limit as x approaches 0 of ln(1/(x^2))
\lim\:_{x\to\:0}(\ln(\frac{1}{x^{2}}))
(\partial)/(\partial z)(y^2z)
\frac{\partial\:}{\partial\:z}(y^{2}z)
integral from 0 to N of e^{-st}cos(3t)
\int\:_{0}^{N}e^{-st}\cos(3t)dt
tangent of y=4x-3x^2,(2,-4)
tangent\:y=4x-3x^{2},(2,-4)
derivative of (x+2)^2
derivative\:(x+2)^{2}
(dy)/(dx)-1/x y=-9
\frac{dy}{dx}-\frac{1}{x}y=-9
integral of (5x^3+2x)/(x-1)
\int\:\frac{5x^{3}+2x}{x-1}dx
derivative of 2+4cos(x^3+3sin(x^3))
\frac{d}{dx}(2+4\cos(x^{3})+3\sin(x^{3}))
derivative of ln(\sqrt[4]{(x-1/(x+1)}))
\frac{d}{dx}(\ln(\sqrt[4]{\frac{x-1}{x+1}}))
derivative of f(x)= 1/5 x^2+(200000)/x
derivative\:f(x)=\frac{1}{5}x^{2}+\frac{200000}{x}
(1+x^2)y^{''}+y^'x+ax=0
(1+x^{2})y^{\prime\:\prime\:}+y^{\prime\:}x+ax=0
f(t)=3cos(t)
f(t)=3\cos(t)
integral of (sec(x))/(2sec(x)+1)
\int\:\frac{\sec(x)}{2\sec(x)+1}dx
tangent of x^2+y^2=100,(-6,8)
tangent\:x^{2}+y^{2}=100,(-6,8)
integral of-xcos((nxpi)/l)
\int\:-x\cos(\frac{nxπ}{l})dx
1
..
81
82
83
84
85
..
2459