Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of f(x)=2(13-x^4)
derivative\:f(x)=2(13-x^{4})
integral from 1 to 8 of 1/(xsqrt(16x^2-9))
\int\:_{1}^{8}\frac{1}{x\sqrt{16x^{2}-9}}dx
limit as x approaches 6 of cos(1/(x-6))
\lim\:_{x\to\:6}(\cos(\frac{1}{x-6}))
integral of cos(x)sec^3(x)
\int\:\cos(x)\sec^{3}(x)dx
derivative of f(x)=(x^3+3x+2)/(x^2-1)
derivative\:f(x)=\frac{x^{3}+3x+2}{x^{2}-1}
integral from 0 to 2 of integral from 0 to sqrt(2-x^2 of)18xy
\int\:_{0}^{2}\int\:_{0}^{\sqrt{2-x^{2}}}18xydydx
limit as x approaches-2 of (x+2)/(2x+sqrt(x^2+12))
\lim\:_{x\to\:-2}(\frac{x+2}{2x+\sqrt{x^{2}+12}})
limit as x approaches 3 of ((2x^3-5x^2-2x-3))/(4x^3-13x^2+4x-3)
\lim\:_{x\to\:3}(\frac{(2x^{3}-5x^{2}-2x-3)}{4x^{3}-13x^{2}+4x-3})
limit as x approaches 0 of x*cos(x)
\lim\:_{x\to\:0}(x\cdot\:\cos(x))
integral of (-4x+4)/(5(4x^2-4x+5))
\int\:\frac{-4x+4}{5(4x^{2}-4x+5)}dx
f(θ)=4sin(θ)
f(θ)=4\sin(θ)
area y=(14)/x ,y=-64x+72
area\:y=\frac{14}{x},y=-64x+72
(\partial)/(\partial y)(4x^3y^3-3x^2sin(x^3)y)
\frac{\partial\:}{\partial\:y}(4x^{3}y^{3}-3x^{2}\sin(x^{3})y)
derivative of ((x^2-1^3)/((2x+1)^5))
\frac{d}{dx}(\frac{(x^{2}-1)^{3}}{(2x+1)^{5}})
integral from-2 to 4 of (x^2-2x-8)
\int\:_{-2}^{4}(x^{2}-2x-8)dx
limit as x approaches infinity of (sin(17x))/x
\lim\:_{x\to\:\infty\:}(\frac{\sin(17x)}{x})
(\partial)/(\partial x)(sin(x^2+xy))
\frac{\partial\:}{\partial\:x}(\sin(x^{2}+xy))
derivative of (xcos(x)/(1+e^x))
\frac{d}{dx}(\frac{x\cos(x)}{1+e^{x}})
(\partial)/(\partial x)(y^5sin(2x))
\frac{\partial\:}{\partial\:x}(y^{5}\sin(2x))
area 4-x^2,x^2-2x
area\:4-x^{2},x^{2}-2x
y^{''}-2y^'+y=te^t+4
y^{\prime\:\prime\:}-2y^{\prime\:}+y=te^{t}+4
y^{''}+36y=sec^2(6x)
y^{\prime\:\prime\:}+36y=\sec^{2}(6x)
y^'=3x^2(1+y^2)
y^{\prime\:}=3x^{2}(1+y^{2})
derivative of (x-4/x+ln(x/4))
\frac{d}{dx}(\frac{x-4}{x}+\ln(\frac{x}{4}))
y^{''}-4y^'+3y=0,y(0)=1,y^'(0)= 1/3
y^{\prime\:\prime\:}-4y^{\prime\:}+3y=0,y(0)=1,y^{\prime\:}(0)=\frac{1}{3}
derivative of x^4+8x
\frac{d}{dx}(x^{4}+8x)
derivative of f(x)=-4/x
derivative\:f(x)=-\frac{4}{x}
tangent of x^3,\at x=1
tangent\:x^{3},\at\:x=1
derivative of y=(x^6-10)x
derivative\:y=(x^{6}-10)x
(dy)/(dt)=0.0572(400-y),y(0)=32
\frac{dy}{dt}=0.0572(400-y),y(0)=32
y^'+(1-2x)/(x^2)y-1=0
y^{\prime\:}+\frac{1-2x}{x^{2}}y-1=0
(\partial)/(\partial y)(xy+yz+zy)
\frac{\partial\:}{\partial\:y}(xy+yz+zy)
derivative of f(x)=-1/9 (x^{-9}-x^{18})
derivative\:f(x)=-\frac{1}{9}(x^{-9}-x^{18})
integral of 1/(16e^{-5x)+e^{5x}}
\int\:\frac{1}{16e^{-5x}+e^{5x}}dx
tangent of (4-x)y^2=x^3,(2,2)
tangent\:(4-x)y^{2}=x^{3},(2,2)
(\partial)/(\partial y)(-y/(x^2))
\frac{\partial\:}{\partial\:y}(-\frac{y}{x^{2}})
integral of 4x^7
\int\:4x^{7}dx
derivative of f(x)=0.0622x^2+1.1119x+2.3979
derivative\:f(x)=0.0622x^{2}+1.1119x+2.3979
derivative of y=x^5
derivative\:y=x^{5}
integral of (10)/x
\int\:\frac{10}{x}dx
derivative of R(q)=(q^2+1)^4
derivative\:R(q)=(q^{2}+1)^{4}
limit as x approaches 3+of (4x)/(x-3)
\lim\:_{x\to\:3+}(\frac{4x}{x-3})
tangent of y=8(x-1/x)^4,\at x=2
tangent\:y=8(x-\frac{1}{x})^{4},\at\:x=2
derivative of ((x^2-1))/(x-1)
derivative\:\frac{(x^{2}-1)}{x-1}
limit as x approaches 0 of (6e^x-6)/x
\lim\:_{x\to\:0}(\frac{6e^{x}-6}{x})
(dy)/(dx)=((x^2y-y))/((y+1))
\frac{dy}{dx}=\frac{(x^{2}y-y)}{(y+1)}
derivative of cos(4x+sin(4x))
\frac{d}{dx}(\cos(4x)+\sin(4x))
10y^{''}+1000y=0
10y^{\prime\:\prime\:}+1000y=0
(\partial)/(\partial u)(2sin(u)cos(v))
\frac{\partial\:}{\partial\:u}(2\sin(u)\cos(v))
area y=4(x+1),y=5(x+1),x=7
area\:y=4(x+1),y=5(x+1),x=7
limit as x approaches 0 of (sin(x)-cos(x)sin(x))/(x^2)
\lim\:_{x\to\:0}(\frac{\sin(x)-\cos(x)\sin(x)}{x^{2}})
limit as x approaches 0+of (x^2+1)^{1/x}
\lim\:_{x\to\:0+}((x^{2}+1)^{\frac{1}{x}})
limit as x approaches 0+of (sin(x^2))/x
\lim\:_{x\to\:0+}(\frac{\sin(x^{2})}{x})
(dy)/(dx)-2xy=e^{x^2}
\frac{dy}{dx}-2xy=e^{x^{2}}
x((dy)/(dx))+y=y^2
x(\frac{dy}{dx})+y=y^{2}
integral of (3-18x)/(sqrt(64-9x^2))
\int\:\frac{3-18x}{\sqrt{64-9x^{2}}}dx
(dy)/(dx)=(b^2x)/(a^2y)
\frac{dy}{dx}=\frac{b^{2}x}{a^{2}y}
(\partial)/(\partial x)(e^{2x}+yln(x))
\frac{\partial\:}{\partial\:x}(e^{2x}+y\ln(x))
2y^{''}+y^'-10y=0,y(1)=5,y^'(1)=2
2y^{\prime\:\prime\:}+y^{\prime\:}-10y=0,y(1)=5,y^{\prime\:}(1)=2
derivative of (1/(x^2-3/(x^4))(x+5x^3))
\frac{d}{dx}((\frac{1}{x^{2}}-\frac{3}{x^{4}})(x+5x^{3}))
3y^'+15y=180
3y^{\prime\:}+15y=180
integral from 0 to 2 of 1/(8+2t^2)
\int\:_{0}^{2}\frac{1}{8+2t^{2}}dt
integral of (arccos(x))
\int\:(\arccos(x))dx
derivative of sqrt(x+x^2)
\frac{d}{dx}(\sqrt{x+x^{2}})
inverse oflaplace 1/(s^2)*3/((s+1))
inverselaplace\:\frac{1}{s^{2}}\cdot\:\frac{3}{(s+1)}
integral of (2x+1)/((x^2+4)^2(x+1)^3)
\int\:\frac{2x+1}{(x^{2}+4)^{2}(x+1)^{3}}dx
derivative of x^7cos(x)
\frac{d}{dx}(x^{7}\cos(x))
derivative of u/(u^2+6)
derivative\:\frac{u}{u^{2}+6}
integral of ((x^2-16)^{3/2})/(x^3)
\int\:\frac{(x^{2}-16)^{\frac{3}{2}}}{x^{3}}dx
integral of 6x^3
\int\:6x^{3}dx
integral of x7^x
\int\:x7^{x}dx
integral of (sin(2x))/(4+cos^2(x))
\int\:\frac{\sin(2x)}{4+\cos^{2}(x)}dx
integral of (x^2+x)e^{1-2x}
\int\:(x^{2}+x)e^{1-2x}dx
integral of sin(9x)cos(6x)
\int\:\sin(9x)\cos(6x)dx
longdivision ((x-1))/(x+1)
longdivision\:\frac{(x-1)}{x+1}
d/(dθ)(cos^2(θ))
\frac{d}{dθ}(\cos^{2}(θ))
y^3-(2x+8)+3xy^2y^'=0
y^{3}-(2x+8)+3xy^{2}y^{\prime\:}=0
(\partial)/(\partial y)(3x^2+4xy+y^2)
\frac{\partial\:}{\partial\:y}(3x^{2}+4xy+y^{2})
(\partial)/(\partial x)(6xy)
\frac{\partial\:}{\partial\:x}(6xy)
y^{''}+y=0,y(pi/3)=0,y^'(pi/3)=4
y^{\prime\:\prime\:}+y=0,y(\frac{π}{3})=0,y^{\prime\:}(\frac{π}{3})=4
derivative of (tan(1/x)^{sec(1/x)})
\frac{d}{dx}((\tan(\frac{1}{x}))^{\sec(\frac{1}{x})})
integral from 6 to 10 of 1/((x-6)^4)
\int\:_{6}^{10}\frac{1}{(x-6)^{4}}dx
integral of x/(2x+4)
\int\:\frac{x}{2x+4}dx
limit as x approaches 3 of (sqrt(12-x)-3)/(1+x-sqrt(x^2+7))
\lim\:_{x\to\:3}(\frac{\sqrt{12-x}-3}{1+x-\sqrt{x^{2}+7}})
d/(dy)(-2xysin(x^2y))
\frac{d}{dy}(-2xy\sin(x^{2}y))
integral of 1/(sin^2(θ))
\int\:\frac{1}{\sin^{2}(θ)}dθ
integral of 1/(sqrt(12x+0.02x^2))
\int\:\frac{1}{\sqrt{12x+0.02x^{2}}}dx
derivative of sin(ln((x^2+4^4)))
\frac{d}{dx}(\sin(\ln((x^{2}+4)^{4})))
7x-8ysqrt(x^2+1)(dy)/(dx)=0
7x-8y\sqrt{x^{2}+1}\frac{dy}{dx}=0
integral of (2x+2)/(x^2-2x+1)
\int\:\frac{2x+2}{x^{2}-2x+1}dx
limit as x approaches 8 of (x^2-5)/(x-8)
\lim\:_{x\to\:8}(\frac{x^{2}-5}{x-8})
integral of x(3x^2+1)
\int\:x(3x^{2}+1)dx
(dy}{dx}=\frac{e^{sqrt(x)})/y
\frac{dy}{dx}=\frac{e^{\sqrt{x}}}{y}
integral of-picos(pix)
\int\:-π\cos(πx)dx
integral of 1/(sqrt((4x)^2+2^2))
\int\:\frac{1}{\sqrt{(4x)^{2}+2^{2}}}dx
(dy)/(dt)+2/t y=4t-3+2/t
\frac{dy}{dt}+\frac{2}{t}y=4t-3+\frac{2}{t}
limit as x approaches 10 of (sqrt(x-1)-3)/(x-10)
\lim\:_{x\to\:10}(\frac{\sqrt{x-1}-3}{x-10})
derivative of sqrt(7)u+sqrt(2u)
derivative\:\sqrt{7}u+\sqrt{2u}
sum from n=0 to infinity of (sin(100))^n
\sum\:_{n=0}^{\infty\:}(\sin(100))^{n}
integral of x/(sqrt(x))
\int\:\frac{x}{\sqrt{x}}dx
1
..
63
64
65
66
67
..
2459