Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of ln(5e^{-4x})
\frac{d}{dx}(\ln(5e^{-4x}))
integral of x/(x^2+4x+3)
\int\:\frac{x}{x^{2}+4x+3}dx
integral of 1/(4-y)
\int\:\frac{1}{4-y}dy
limit as x approaches 8+of (x-8)/(|x-8|)
\lim\:_{x\to\:8+}(\frac{x-8}{\left|x-8\right|})
tangent of y=3x^2-2x,\at x=-1
tangent\:y=3x^{2}-2x,\at\:x=-1
derivative of x^2(x-2^4)
\frac{d}{dx}(x^{2}(x-2)^{4})
(\partial)/(\partial x)(sqrt(2x+3y))
\frac{\partial\:}{\partial\:x}(\sqrt{2x+3y})
limit as x approaches infinity of 3/3
\lim\:_{x\to\:\infty\:}(\frac{3}{3})
derivative of x^{ln(5})
\frac{d}{dx}(x^{\ln(5)})
sum from n=0 to infinity of 1/(n^2+5n+6)
\sum\:_{n=0}^{\infty\:}\frac{1}{n^{2}+5n+6}
integral of (5x^2+6+9/(x^2+1))
\int\:(5x^{2}+6+\frac{9}{x^{2}+1})dx
(dh)/(dt)+1/2 h=1
\frac{dh}{dt}+\frac{1}{2}h=1
derivative of \sqrt[4]{sin(x^3})
\frac{d}{dx}(\sqrt[4]{\sin(x^{3})})
integral of e^{cos(6t)}sin(6t)
\int\:e^{\cos(6t)}\sin(6t)dt
y^{''}-4y^'+4y=0,y(0)=-4,y^'(0)=4
y^{\prime\:\prime\:}-4y^{\prime\:}+4y=0,y(0)=-4,y^{\prime\:}(0)=4
integral of 1/(100+2t)
\int\:\frac{1}{100+2t}dt
limit as x approaches+0 of 3x
\lim\:_{x\to\:+0}(3x)
(\partial)/(\partial y)(1+ye^{xy})
\frac{\partial\:}{\partial\:y}(1+ye^{xy})
integral from 1 to 4 of (sqrt(x)ln(x))
\int\:_{1}^{4}(\sqrt{x}\ln(x))dx
derivative of ye^{-x}
\frac{d}{dx}(ye^{-x})
(dP)/(dt)=aP-bP^2
\frac{dP}{dt}=aP-bP^{2}
limit as x approaches 2 of ((x+3))/(x-2)
\lim\:_{x\to\:2}(\frac{(x+3)}{x-2})
(dy)/(dx)=(e^x)/(6+e^x)
\frac{dy}{dx}=\frac{e^{x}}{6+e^{x}}
area cos(x),0.5,0<= x<= pi
area\:\cos(x),0.5,0\le\:x\le\:π
integral of (2x-3)tan(7x^2-21x+9)
\int\:(2x-3)\tan(7x^{2}-21x+9)dx
derivative of y=(x+6)/(x^3+x-7)
derivative\:y=\frac{x+6}{x^{3}+x-7}
(y^4-x^2)(dy)/(dx)=-x*y
(y^{4}-x^{2})\frac{dy}{dx}=-x\cdot\:y
(x^2+1)((dy)/(dx))+3x(y-1)=0
(x^{2}+1)(\frac{dy}{dx})+3x(y-1)=0
(\partial)/(\partial x)(7xln(xy))
\frac{\partial\:}{\partial\:x}(7x\ln(xy))
derivative of 13^x
\frac{d}{dx}(13^{x})
integral from 2 to 4 of 1/(|x-3|^{1/2)}
\int\:_{2}^{4}\frac{1}{\left|x-3\right|^{\frac{1}{2}}}dx
tangent of f(x)=x^2+x,\at x=-4,-1
tangent\:f(x)=x^{2}+x,\at\:x=-4,-1
integral of-2/y
\int\:-\frac{2}{y}dy
integral from 2 to 5 of 4/(9+(x-2)^2)
\int\:_{2}^{5}\frac{4}{9+(x-2)^{2}}dx
derivative of f(x)=ln(169sin^2(x))
derivative\:f(x)=\ln(169\sin^{2}(x))
integral of e^{tan(8x)}sec^2(8x)
\int\:e^{\tan(8x)}\sec^{2}(8x)dx
derivative of 8sqrt(x)+6x^{3/4}
\frac{d}{dx}(8\sqrt{x}+6x^{\frac{3}{4}})
integral of 4/(1+x)
\int\:\frac{4}{1+x}dx
integral of (2x-1)ln(x)
\int\:(2x-1)\ln(x)dx
integral of (2x^2+x+15)/(x+3)
\int\:\frac{2x^{2}+x+15}{x+3}dx
integral from 1 to 2 of 2-x
\int\:_{1}^{2}2-xdx
y^'=xsqrt(y+3)
y^{\prime\:}=x\sqrt{y+3}
limit as x approaches-infinity of 2+e^x
\lim\:_{x\to\:-\infty\:}(2+e^{x})
derivative of 0.1x
\frac{d}{dx}(0.1x)
tangent of y=x^2+2,(2,6)
tangent\:y=x^{2}+2,(2,6)
integral of sqrt(1-r^2)
\int\:\sqrt{1-r^{2}}dr
area x^2,-x^2+18x
area\:x^{2},-x^{2}+18x
derivative of e^x-8x^7
derivative\:e^{x}-8x^{7}
inverse oflaplace {(2s-6)/(s^2+9)}
inverselaplace\:\left\{\frac{2s-6}{s^{2}+9}\right\}
derivative of ((x^3))/3+x
derivative\:\frac{(x^{3})}{3}+x
integral from 8 to 11 of 2arccot(x)
\int\:_{8}^{11}2\arccot(x)dx
laplacetransform t^2e^{-2t}sin(2t)
laplacetransform\:t^{2}e^{-2t}\sin(2t)
(\partial)/(\partial x)(2x+y)
\frac{\partial\:}{\partial\:x}(2x+y)
7y^'-14y=0
7y^{\prime\:}-14y=0
integral of sqrt(tan(x))
\int\:\sqrt{\tan(x)}dx
derivative of (-3)/(2x)
derivative\:\frac{-3}{2x}
integral of (x^2)/(\sqrt[4]{x^3+2)}
\int\:\frac{x^{2}}{\sqrt[4]{x^{3}+2}}dx
x(dy)/(dx)=y^2+y
x\frac{dy}{dx}=y^{2}+y
integral from 0 to 4 of sqrt(x)-1
\int\:_{0}^{4}\sqrt{x}-1dx
derivative of y=sqrt(5-x^2)
derivative\:y=\sqrt{5-x^{2}}
integral of (6x+5)sqrt(3x^2+5x)
\int\:(6x+5)\sqrt{3x^{2}+5x}dx
limit as t approaches 0 of (4t^2+3t+2)/(t^3+2t-6)
\lim\:_{t\to\:0}(\frac{4t^{2}+3t+2}{t^{3}+2t-6})
f(x)=-x^2+3x-1
f(x)=-x^{2}+3x-1
integral of ((e^{2x}))/(e^{4x)+4}
\int\:\frac{(e^{2x})}{e^{4x}+4}dx
integral of 1/(sqrt(8-2x-x^2))
\int\:\frac{1}{\sqrt{8-2x-x^{2}}}dx
derivative of 3/2
\frac{d}{dx}(\frac{3}{2})
(\partial)/(\partial x)(3e)
\frac{\partial\:}{\partial\:x}(3e)
y^{''}+y=tan^3(x)
y^{\prime\:\prime\:}+y=\tan^{3}(x)
integral of e^{-3x}sin(bx)
\int\:e^{-3x}\sin(bx)dx
(\partial)/(\partial x)((x^2+y^2)^2)
\frac{\partial\:}{\partial\:x}((x^{2}+y^{2})^{2})
integral of e^{4x-9}
\int\:e^{4x-9}dx
derivative of 3/(e^x+e^{-x})
\frac{d}{dx}(\frac{3}{e^{x}+e^{-x}})
derivative of 2/(sqrt(x^3+1))
\frac{d}{dx}(\frac{2}{\sqrt{x^{3}+1}})
y-xy^'=a(1+x^2y^')
y-xy^{\prime\:}=a(1+x^{2}y^{\prime\:})
limit as x approaches 3 of (2x-9)/(x-3)
\lim\:_{x\to\:3}(\frac{2x-9}{x-3})
(\partial)/(\partial x)(x^3yz^2+8yz)
\frac{\partial\:}{\partial\:x}(x^{3}yz^{2}+8yz)
integral of 1/(cos^2(x)+5cos(x)+6)
\int\:\frac{1}{\cos^{2}(x)+5\cos(x)+6}dx
integral of 10x^3+2x^2+1/2 x+3
\int\:10x^{3}+2x^{2}+\frac{1}{2}x+3dx
(dy)/(dx)=(y-5)^2
\frac{dy}{dx}=(y-5)^{2}
(dy)/(dx)
\frac{dy}{dx}
derivative of (-14x)/(12y)
derivative\:\frac{-14x}{12y}
area y= 1/2 x^2,y=-x^2+6
area\:y=\frac{1}{2}x^{2},y=-x^{2}+6
integral of x*ln(x-1)
\int\:x\cdot\:\ln(x-1)dx
2x(dy)/(dx)-y=3x^2
2x\frac{dy}{dx}-y=3x^{2}
limit as x approaches 2 of 1/(2x)
\lim\:_{x\to\:2}(\frac{1}{2x})
integral of 3x^2e^{9x^3}
\int\:3x^{2}e^{9x^{3}}dx
derivative of f(x)=sqrt((x-1)/(x+3))
derivative\:f(x)=\sqrt{\frac{x-1}{x+3}}
integral from 0 to infinity of e^{(-2x)}
\int\:_{0}^{\infty\:}e^{(-2x)}dx
derivative of 4^{(x^9)}
derivative\:4^{(x^{9})}
taylor 1/((2+x)^3)
taylor\:\frac{1}{(2+x)^{3}}
limit as x approaches-infinity of 3^{-x}
\lim\:_{x\to\:-\infty\:}(3^{-x})
slope of (11/6 ,-1/2),(1/3 , 1/3)
slope\:(\frac{11}{6},-\frac{1}{2}),(\frac{1}{3},\frac{1}{3})
slope of (1)(3.5)
slope\:(1)(3.5)
integral of 19arctan(x)
\int\:19\arctan(x)dx
f(x)=(4x^2-6x)^3
f(x)=(4x^{2}-6x)^{3}
derivative of y=(7x^3-3x^2-9)/(x^8)
derivative\:y=\frac{7x^{3}-3x^{2}-9}{x^{8}}
derivative of cos^2(x*sin(x))
\frac{d}{dx}(\cos^{2}(x)\cdot\:\sin(x))
integral from 0 to 4 of 6x
\int\:_{0}^{4}6xdx
tangent of f(x)=x^{1/2},(25,5)
tangent\:f(x)=x^{\frac{1}{2}},(25,5)
derivative of log_{2}(\sqrt[3]{2x+1})
\frac{d}{dx}(\log_{2}(\sqrt[3]{2x+1}))
1
..
61
62
63
64
65
..
2459