Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of e^{-0.02x}
\int\:e^{-0.02x}dx
integral of 1/((2x-1))
\int\:\frac{1}{(2x-1)}dx
t^2(dy)/(dt)-t=1+y+yt
t^{2}\frac{dy}{dt}-t=1+y+yt
y^{''}=ey
y^{\prime\:\prime\:}=ey
derivative of e^{x+5}
\frac{d}{dx}(e^{x+5})
area y=ln(x-1),y=x-2,x=3
area\:y=\ln(x-1),y=x-2,x=3
inverse oflaplace (100)/(s(s^2+2s+6))
inverselaplace\:\frac{100}{s(s^{2}+2s+6)}
f^'(x)=sec^2(x)
f^{\prime\:}(x)=\sec^{2}(x)
y^'-7y=14x
y^{\prime\:}-7y=14x
limit as x approaches infinity of 8
\lim\:_{x\to\:\infty\:}(8)
(\partial)/(\partial y)(ln(2xy+4))
\frac{\partial\:}{\partial\:y}(\ln(2xy+4))
derivative of f(x)=x^{cos(x)}
derivative\:f(x)=x^{\cos(x)}
tangent of f(x)=xsqrt(x),\at x=18
tangent\:f(x)=x\sqrt{x},\at\:x=18
limit as x approaches 2+of (1-x)/(x-2)
\lim\:_{x\to\:2+}(\frac{1-x}{x-2})
integral from 0 to 2 of 1/(4-x^2)
\int\:_{0}^{2}\frac{1}{4-x^{2}}dx
integral of (5x^2+15x+8)/((x+2)^2x)
\int\:\frac{5x^{2}+15x+8}{(x+2)^{2}x}dx
derivative of y=e^{-3x}
derivative\:y=e^{-3x}
derivative of \sqrt[3]{x-3}
\frac{d}{dx}(\sqrt[3]{x-3})
area 3x^4-3x^2,6x^2
area\:3x^{4}-3x^{2},6x^{2}
(\partial)/(\partial t)(t/(2y^4))
\frac{\partial\:}{\partial\:t}(\frac{t}{2y^{4}})
limit as x approaches 0-of 1/(2+e^{1/x)}
\lim\:_{x\to\:0-}(\frac{1}{2+e^{\frac{1}{x}}})
integral from 0 to 2 of 2x-x^2
\int\:_{0}^{2}2x-x^{2}dx
area 9x,x^2-10
area\:9x,x^{2}-10
(\partial)/(\partial x)(yz+xln(y)-z^2)
\frac{\partial\:}{\partial\:x}(yz+x\ln(y)-z^{2})
derivative of 3/(x+2)
derivative\:\frac{3}{x+2}
sum from n=1 to infinity of 1/((2n-1)^4)
\sum\:_{n=1}^{\infty\:}\frac{1}{(2n-1)^{4}}
derivative of (e^{(x^2}+4)^2)
\frac{d}{dx}((e^{(x^{2})}+4)^{2})
y^{''}-8y^'+18y=0,y(0)=1,y^'(0)=-4
y^{\prime\:\prime\:}-8y^{\prime\:}+18y=0,y(0)=1,y^{\prime\:}(0)=-4
integral of (8x^2+5)^{10}x
\int\:(8x^{2}+5)^{10}xdx
integral of 2x(x^2+7)^7
\int\:2x(x^{2}+7)^{7}dx
(dy)/(dx)=-1/3 x^3
\frac{dy}{dx}=-\frac{1}{3}x^{3}
(d^2)/(dx^2)(x+1/x)
\frac{d^{2}}{dx^{2}}(x+\frac{1}{x})
integral of (cos(2x))/(cos(x))
\int\:\frac{\cos(2x)}{\cos(x)}dx
8x^2y^'=y^'+8xe^{-y}
8x^{2}y^{\prime\:}=y^{\prime\:}+8xe^{-y}
derivative of f(x)=-7sqrt(x)-2/(x^7)
derivative\:f(x)=-7\sqrt{x}-\frac{2}{x^{7}}
(\partial)/(\partial x)(arctan(y))
\frac{\partial\:}{\partial\:x}(\arctan(y))
limit as x approaches 2 of pi
\lim\:_{x\to\:2}(π)
derivative of-sin(x+cos(x))
\frac{d}{dx}(-\sin(x)+\cos(x))
derivative of f(x)=(6x^2+4)e^x
derivative\:f(x)=(6x^{2}+4)e^{x}
integral of x/(x^2+6x+11)
\int\:\frac{x}{x^{2}+6x+11}dx
derivative of (5-3x^3)
\frac{d}{dx}((5-3x)^{3})
derivative of e^{6e^x}
derivative\:e^{6e^{x}}
integral from 0 to 1 of (2x-2x^2)
\int\:_{0}^{1}(2x-2x^{2})dx
derivative of x^4+x^3+x^2+1
\frac{d}{dx}(x^{4}+x^{3}+x^{2}+1)
integral of (2x+3)/(sqrt(x))
\int\:\frac{2x+3}{\sqrt{x}}dx
tangent of f(x)=4-x^2,(-1,3)
tangent\:f(x)=4-x^{2},(-1,3)
derivative of 7xsin(x)
derivative\:7x\sin(x)
integral from 1 to 3 of 2x+3
\int\:_{1}^{3}2x+3dx
derivative of 1/(9x+1)
\frac{d}{dx}(\frac{1}{9x+1})
integral of sin^2(x/3)
\int\:\sin^{2}(\frac{x}{3})dx
derivative of-2x+1/x
\frac{d}{dx}(-2x+\frac{1}{x})
integral of (5x^2+5x-4)
\int\:(5x^{2}+5x-4)dx
derivative of xcos(x^2)
derivative\:x\cos(x^{2})
derivative of (x+6/(5x^2e^x))
\frac{d}{dx}(\frac{x+6}{5x^{2}e^{x}})
derivative of f(x)=-cos(x)
derivative\:f(x)=-\cos(x)
limit as x approaches 16 of x-164
\lim\:_{x\to\:16}(x-164)
(\partial)/(\partial x)(arctan(x^2+y^2))
\frac{\partial\:}{\partial\:x}(\arctan(x^{2}+y^{2}))
derivative of (x^5)/(4-x^4)
derivative\:\frac{x^{5}}{4-x^{4}}
y^{'''}-7y^{''}-8y^'=0
y^{\prime\:\prime\:\prime\:}-7y^{\prime\:\prime\:}-8y^{\prime\:}=0
tangent of f(x)= 2/(x^2),\at x=1
tangent\:f(x)=\frac{2}{x^{2}},\at\:x=1
derivative of 1/2 cos^2(x/2)
\frac{d}{dx}(\frac{1}{2}\cos^{2}(\frac{x}{2}))
integral of x^3*cos(x^2)
\int\:x^{3}\cdot\:\cos(x^{2})dx
derivative of (4x^3-7x^7)
\frac{d}{dx}((4x^{3}-7x)^{7})
integral of xsqrt(2x-x^2)
\int\:x\sqrt{2x-x^{2}}dx
integral of ((8+5x)/(1+x^2))
\int\:(\frac{8+5x}{1+x^{2}})dx
derivative of 4x^4+x^3-(9x^2/2+8x)
\frac{d}{dx}(4x^{4}+x^{3}-\frac{9x^{2}}{2}+8x)
taylor sin(pix), 1/2
taylor\:\sin(πx),\frac{1}{2}
(cos^2(t))^'
(\cos^{2}(t))^{\prime\:}
derivative of 9x^7+3x^5-6x^6-2x^4
\frac{d}{dx}(9x^{7}+3x^{5}-6x^{6}-2x^{4})
derivative of 5x^2+7x-6
\frac{d}{dx}(5x^{2}+7x-6)
derivative of 10sqrt(x)*e^x
derivative\:10\sqrt{x}\cdot\:e^{x}
integral from 0 to 1 of 1.5x^2
\int\:_{0}^{1}1.5x^{2}dx
(\partial)/(\partial s)(2s^2t^2)
\frac{\partial\:}{\partial\:s}(2s^{2}t^{2})
derivative of x/(11-(11)/x)
\frac{d}{dx}(\frac{x}{11}-\frac{11}{x})
derivative of 2x+1/(ln(x^2+e+1)-4)
\frac{d}{dx}(2x+\frac{1}{\ln(x^{2}+e)+1}-4)
derivative of \sqrt[5]{6x}
\frac{d}{dx}(\sqrt[5]{6x})
derivative of x/4 arcsin(x)
derivative\:\frac{x}{4}\arcsin(x)
(\partial)/(\partial x)(1/(2x^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{2x^{2}})
limit as x approaches 0 of (10)/x
\lim\:_{x\to\:0}(\frac{10}{x})
integral from ln(9) to ln(36) of e^{x/2}
\int\:_{\ln(9)}^{\ln(36)}e^{\frac{x}{2}}dx
f(x)= 3/(x^4)
f(x)=\frac{3}{x^{4}}
integral of e^{x^2-4}
\int\:e^{x^{2}-4}dx
limit as x approaches 4 of 3-4
\lim\:_{x\to\:4}(3-4)
integral of 1/(1+16x)
\int\:\frac{1}{1+16x}dx
(dy)/(dx)-y/x =7xe^x
\frac{dy}{dx}-\frac{y}{x}=7xe^{x}
integral from 1 to 36 of 1/(2x)
\int\:_{1}^{36}\frac{1}{2x}dx
limit as x approaches-5 of 3x+2
\lim\:_{x\to\:-5}(3x+2)
integral of x^3sqrt(81+x^2)
\int\:x^{3}\sqrt{81+x^{2}}dx
(\partial)/(\partial x)(e^{-x/(2y)})
\frac{\partial\:}{\partial\:x}(e^{-\frac{x}{2y}})
limit as x approaches 0 of 4/(14+x)
\lim\:_{x\to\:0}(\frac{4}{14+x})
derivative of y=((x-2))/(y+3)
derivative\:y=\frac{(x-2)}{y+3}
derivative of f(x)=e^{x^2+1}
derivative\:f(x)=e^{x^{2}+1}
limit as x approaches 0 of 1+1/(4x^2)
\lim\:_{x\to\:0}(1+\frac{1}{4x^{2}})
integral of (sqrt(x-2))/((x+1))
\int\:\frac{\sqrt{x-2}}{(x+1)}dx
integral of tan^7(x/2)sec^2(x/2)
\int\:\tan^{7}(\frac{x}{2})\sec^{2}(\frac{x}{2})dx
integral of 1.8t
\int\:1.8tdt
integral of e^xsqrt(49-e^{2x)}
\int\:e^{x}\sqrt{49-e^{2x}}dx
tangent of f(x)=ln(x-4)
tangent\:f(x)=\ln(x-4)
integral of (x^3)/(x^2-64)
\int\:\frac{x^{3}}{x^{2}-64}dx
tangent of f(x)= 1/(sqrt(x^2+1)),\at x=2
tangent\:f(x)=\frac{1}{\sqrt{x^{2}+1}},\at\:x=2
1
..
60
61
62
63
64
..
2459