Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of sqrt(2x-2)
\frac{d}{dx}(\sqrt{2x-2})
derivative of 3x^2-10x+7
\frac{d}{dx}(3x^{2}-10x+7)
integral from 0 to 1 of (1+sqrt(x))^8
\int\:_{0}^{1}(1+\sqrt{x})^{8}dx
(\partial)/(\partial x)(e^{3xyz-2})
\frac{\partial\:}{\partial\:x}(e^{3xyz-2})
derivative of (3x+1/(x^2+1))
\frac{d}{dx}(\frac{3x+1}{x^{2}+1})
limit as x approaches pi/2 of (sin(x))/x
\lim\:_{x\to\:\frac{π}{2}}(\frac{\sin(x)}{x})
area x=(y^2)/4 ,x= y/2+2
area\:x=\frac{y^{2}}{4},x=\frac{y}{2}+2
sum from n=0 to infinity of nsin(npi)
\sum\:_{n=0}^{\infty\:}n\sin(nπ)
integral of x/(x(x+4))
\int\:\frac{x}{x(x+4)}dx
(\partial)/(\partial x)(e^x*y)
\frac{\partial\:}{\partial\:x}(e^{x}\cdot\:y)
derivative of f(x)=sqrt(x)+7/(sqrt(x))
derivative\:f(x)=\sqrt{x}+\frac{7}{\sqrt{x}}
integral of x*ln(1+x)
\int\:x\cdot\:\ln(1+x)dx
area x^3-5x^2-x+5,1,5
area\:x^{3}-5x^{2}-x+5,1,5
integral of e^{-2x}sin(x/2)
\int\:e^{-2x}\sin(\frac{x}{2})dx
derivative of f(x)=arctan(2/x)
derivative\:f(x)=\arctan(\frac{2}{x})
integral of x*cos(kx)
\int\:x\cdot\:\cos(kx)dx
tangent of-10x^4+x^3
tangent\:-10x^{4}+x^{3}
derivative of y=x^{13/14}
derivative\:y=x^{\frac{13}{14}}
sum from n=1 to infinity of ln((n+1)^2)
\sum\:_{n=1}^{\infty\:}\ln((n+1)^{2})
2y^{''}+5y^'-3y=0,y(0)=1,y^'(0)=4
2y^{\prime\:\prime\:}+5y^{\prime\:}-3y=0,y(0)=1,y^{\prime\:}(0)=4
sum from n=0 to infinity of 1/(3^{n+1)}
\sum\:_{n=0}^{\infty\:}\frac{1}{3^{n+1}}
integral of tan^3(2t)sec^3(2t)
\int\:\tan^{3}(2t)\sec^{3}(2t)dt
(d^2)/(dx^2)(cos^2(2pix))
\frac{d^{2}}{dx^{2}}(\cos^{2}(2πx))
integral of sqrt(x^3)
\int\:\sqrt{x^{3}}dx
derivative of sqrt(ln(x^2+1))
derivative\:\sqrt{\ln(x^{2}+1)}
integral from-2 to 0 of sqrt(x/2+1)
\int\:_{-2}^{0}\sqrt{\frac{x}{2}+1}dx
y^'=(xe^y)/y
y^{\prime\:}=\frac{xe^{y}}{y}
t^2y^{''}-4ty^'+6y=0
t^{2}y^{\prime\:\prime\:}-4ty^{\prime\:}+6y=0
limit as x approaches 0 of (2x)/(2x^2)
\lim\:_{x\to\:0}(\frac{2x}{2x^{2}})
integral from 3 to 5 of e^{6x}
\int\:_{3}^{5}e^{6x}dx
derivative of f(x)=sqrt(3-2x)
derivative\:f(x)=\sqrt{3-2x}
integral of (x^4+1)/(x^2+1)
\int\:\frac{x^{4}+1}{x^{2}+1}dx
derivative of 0.882a^{0.842}
derivative\:0.882a^{0.842}
integral from-2 to 2 of |x|-(x^2-2)
\int\:_{-2}^{2}\left|x\right|-(x^{2}-2)dx
derivative of (x^3+1)e^x
derivative\:(x^{3}+1)e^{x}
integral of (x-2)^4 1/(sqrt(4x-x^2))
\int\:(x-2)^{4}\frac{1}{\sqrt{4x-x^{2}}}dx
integral of (x^2+7)e^{-x}
\int\:(x^{2}+7)e^{-x}dx
(\partial)/(\partial y)(3xz^3e^{y^2})
\frac{\partial\:}{\partial\:y}(3xz^{3}e^{y^{2}})
limit as x approaches 2 of 4x^2+x+4
\lim\:_{x\to\:2}(4x^{2}+x+4)
integral from 0 to pi/6 of (6sec^2(x))
\int\:_{0}^{\frac{π}{6}}(6\sec^{2}(x))dx
2y^{''}+4y^'-7y=7cos(2x)
2y^{\prime\:\prime\:}+4y^{\prime\:}-7y=7\cos(2x)
integral of sqrt(1+x)
\int\:\sqrt{1+x}dx
tangent of f(x)=e^{3x},\at x= 1/3 ln(5)
tangent\:f(x)=e^{3x},\at\:x=\frac{1}{3}\ln(5)
derivative of sin(xln(2x))
\frac{d}{dx}(\sin(x)\ln(2x))
derivative of x*e^{-3x}
\frac{d}{dx}(x\cdot\:e^{-3x})
integral of (cos(θ))/(1+sin^2(θ))
\int\:\frac{\cos(θ)}{1+\sin^{2}(θ)}dθ
integral of (1+ye^{xy})
\int\:(1+ye^{xy})dx
integral of 1/(x(ln(x))^2)
\int\:\frac{1}{x(\ln(x))^{2}}dx
derivative of (e^x/(x^2+1))
\frac{d}{dx}(\frac{e^{x}}{x^{2}+1})
integral of 18x
\int\:18xdx
implicit (dy)/(dx),8x^3+x^2y-xy^3=9
implicit\:\frac{dy}{dx},8x^{3}+x^{2}y-xy^{3}=9
integral of 1/(x^{4/5)(1+x^{1/5})}
\int\:\frac{1}{x^{\frac{4}{5}}(1+x^{\frac{1}{5}})}dx
x((dy)/(dx))=2x^2+y
x(\frac{dy}{dx})=2x^{2}+y
tangent of f(x)=sqrt(7x+32),\at x=-1
tangent\:f(x)=\sqrt{7x+32},\at\:x=-1
(x+y)dx+(x+y-1)dy=0
(x+y)dx+(x+y-1)dy=0
integral of ((-y)/(x^2+y^2))
\int\:(\frac{-y}{x^{2}+y^{2}})dx
(\partial)/(\partial x)((x-y)sin(3x+2y))
\frac{\partial\:}{\partial\:x}((x-y)\sin(3x+2y))
inverse oflaplace 6/((s^2(s^2+8s+1)))
inverselaplace\:\frac{6}{(s^{2}(s^{2}+8s+1))}
derivative of y=ln|x|
derivative\:y=\ln\left|x\right|
tangent of f(x)=sqrt(x-8),\at x=12
tangent\:f(x)=\sqrt{x-8},\at\:x=12
integral of x^2+4e^x+C
\int\:x^{2}+4e^{x}+Cdx
(\partial)/(\partial x)(2*x^3*y^2)
\frac{\partial\:}{\partial\:x}(2\cdot\:x^{3}\cdot\:y^{2})
integral from 0 to 1 of cos(npix)
\int\:_{0}^{1}\cos(nπx)dx
derivative of ln(6x^4-9x-3)
\frac{d}{dx}(\ln(6x^{4}-9x-3))
y^{''}+8y=0
y^{\prime\:\prime\:}+8y=0
derivative of arctan(9^x)
\frac{d}{dx}(\arctan(9^{x}))
(dx)/(dt)+2tx^3+x/t =0
\frac{dx}{dt}+2tx^{3}+\frac{x}{t}=0
(\partial)/(\partial x)(3-(x^2+y^2)^{1/3})
\frac{\partial\:}{\partial\:x}(3-(x^{2}+y^{2})^{\frac{1}{3}})
integral of 7e^{-0.4x}
\int\:7e^{-0.4x}dx
(2y+1)=(dy)/(dt)
(2y+1)=\frac{dy}{dt}
derivative of f(x)=4x^{-2}
derivative\:f(x)=4x^{-2}
integral of 6t^2\sqrt[3]{t}
\int\:6t^{2}\sqrt[3]{t}dt
integral of sqrt(3/4-x^2)
\int\:\sqrt{\frac{3}{4}-x^{2}}dx
derivative of x^2+7x
\frac{d}{dx}(x^{2}+7x)
integral of (2x+2)/(x^2+1)
\int\:\frac{2x+2}{x^{2}+1}dx
integral of (x^7e^x-8x^6)/(x^7)
\int\:\frac{x^{7}e^{x}-8x^{6}}{x^{7}}dx
derivative of log_{18}(x^2-5x)
\frac{d}{dx}(\log_{18}(x^{2}-5x))
taylor x/(e^x-1)
taylor\:\frac{x}{e^{x}-1}
derivative of 2ln(x^2)
\frac{d}{dx}(2\ln(x^{2}))
sum from n=1 to infinity of 10^nx^n
\sum\:_{n=1}^{\infty\:}10^{n}x^{n}
integral of (x^2+5x+6)cos(2x)
\int\:(x^{2}+5x+6)\cos(2x)dx
area y=x,g(y,x)=x^2,[0,1]
area\:y=x,g(y,x)=x^{2},[0,1]
derivative of cos(sin^3(5x-5))
\frac{d}{dx}(\cos(\sin^{3}(5x-5)))
y^'=((y^3+1))/((3xy^2))
y^{\prime\:}=\frac{(y^{3}+1)}{(3xy^{2})}
limit as x approaches+1 of (1-|x|)/(x-1)
\lim\:_{x\to\:+1}(\frac{1-\left|x\right|}{x-1})
integral of (x^3)/(sqrt(1+x^4))
\int\:\frac{x^{3}}{\sqrt{1+x^{4}}}dx
y^'-y+x^2=0
y^{\prime\:}-y+x^{2}=0
integral from 3 to 6 of 1/(x^2-1)
\int\:_{3}^{6}\frac{1}{x^{2}-1}dx
integral of x^{2/9}
\int\:x^{\frac{2}{9}}dx
(\partial)/(\partial y)(ln(x+8y+5z))
\frac{\partial\:}{\partial\:y}(\ln(x+8y+5z))
(dy)/(dx)-2xy=-6x^2e^{x^2}
\frac{dy}{dx}-2xy=-6x^{2}e^{x^{2}}
limit as x approaches 0 of (sin(c)x)/x
\lim\:_{x\to\:0}(\frac{\sin(c)x}{x})
limit as x approaches 0+of x^{x^3}
\lim\:_{x\to\:0+}(x^{x^{3}})
sum from n=1 to infinity of ((1)^n)/n
\sum\:_{n=1}^{\infty\:}\frac{(1)^{n}}{n}
sum from n=0 to infinity of 17/2
\sum\:_{n=0}^{\infty\:}\frac{17}{2}
(\partial)/(\partial y)(e^{xyz^2}yz^2)
\frac{\partial\:}{\partial\:y}(e^{xyz^{2}}yz^{2})
derivative of (2x+1^4+8x(2x+1)^3)
\frac{d}{dx}((2x+1)^{4}+8x(2x+1)^{3})
integral of (28e^{4x})/(sqrt(6+e^{4x))}
\int\:\frac{28e^{4x}}{\sqrt{6+e^{4x}}}dx
laplacetransform te^{10t}
laplacetransform\:te^{10t}
limit as x approaches 0 of ((arctan(4x)))/(ln(x))
\lim\:_{x\to\:0}(\frac{(\arctan(4x))}{\ln(x)})
1
..
96
97
98
99
100
..
2459