Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 0 to 2 of e^{-3x}
\int\:_{0}^{2}e^{-3x}dx
y^{''}+y^'-6y=6t-7-(20te^{2t}+14e^{2t})
y^{\prime\:\prime\:}+y^{\prime\:}-6y=6t-7-(20te^{2t}+14e^{2t})
tangent of f(x)=x^6,\at x=2
tangent\:f(x)=x^{6},\at\:x=2
(dy)/(dx)=1+xy
\frac{dy}{dx}=1+xy
derivative of 2/x+1
\frac{d}{dx}(\frac{2}{x}+1)
x^'=5(1-x/(10))
x^{\prime\:}=5(1-\frac{x}{10})
y^{''}+4y^'+4y=xcos(2x)+3e^{-2x}
y^{\prime\:\prime\:}+4y^{\prime\:}+4y=x\cos(2x)+3e^{-2x}
integral of tan^3(6x)sec^3(6x)
\int\:\tan^{3}(6x)\sec^{3}(6x)dx
limit as x approaches-2-of 1/(x^2+2x)
\lim\:_{x\to\:-2-}(\frac{1}{x^{2}+2x})
derivative of 1/(cosh(x))
\frac{d}{dx}(\frac{1}{\cosh(x)})
limit as x approaches 3 of (10)/(x-3)
\lim\:_{x\to\:3}(\frac{10}{x-3})
derivative of h=t^2(6t-4)^3
derivative\:h=t^{2}(6t-4)^{3}
(\partial)/(\partial x)(3ln(x)-5)
\frac{\partial\:}{\partial\:x}(3\ln(x)-5)
integral of (x-17)/(x^2+1)
\int\:\frac{x-17}{x^{2}+1}dx
(\partial)/(\partial x)(x^2sin(3xy))
\frac{\partial\:}{\partial\:x}(x^{2}\sin(3xy))
integral of sin(3x+1)
\int\:\sin(3x+1)dx
(\partial)/(\partial x)(5cos(2x+5y))
\frac{\partial\:}{\partial\:x}(5\cos(2x+5y))
integral of (5x^3)/(sqrt(6+x^2))
\int\:\frac{5x^{3}}{\sqrt{6+x^{2}}}dx
derivative of 2sin(2x)
\frac{d}{dx}(2\sin(2x))
(d^4)/(dx^4)(1/(x^2))
\frac{d^{4}}{dx^{4}}(\frac{1}{x^{2}})
integral of x^2cos(mpix)
\int\:x^{2}\cos(mπx)dx
tangent of sin(5x)+cos(4x)
tangent\:\sin(5x)+\cos(4x)
tangent of f(x)= 1/(x+2),\at x=0
tangent\:f(x)=\frac{1}{x+2},\at\:x=0
integral of 9x^3y+3y^2
\int\:9x^{3}y+3y^{2}dx
limit as x approaches 0-of 4(1/x-csc(x))
\lim\:_{x\to\:0-}(4(\frac{1}{x}-\csc(x)))
derivative of (1/3 (x^2+2)^{3/2})
\frac{d}{dx}((\frac{1}{3})(x^{2}+2)^{\frac{3}{2}})
(\partial)/(\partial x)(2y-x^2e^{-y})
\frac{\partial\:}{\partial\:x}(2y-x^{2}e^{-y})
laplacetransform t^3e^{b*t}
laplacetransform\:t^{3}e^{b\cdot\:t}
(\partial)/(\partial x)(ln(x+y^4))
\frac{\partial\:}{\partial\:x}(\ln(x+y^{4}))
limit as x approaches infinity of-x/2
\lim\:_{x\to\:\infty\:}(-\frac{x}{2})
limit as x approaches pi/2 of 5sin(x)
\lim\:_{x\to\:\frac{π}{2}}(5\sin(x))
tangent of f(x)=-9x^2,\at x=2
tangent\:f(x)=-9x^{2},\at\:x=2
maclaurin e^{(-x)/2}
maclaurin\:e^{\frac{-x}{2}}
slope of f(t)=2-4/t
slope\:f(t)=2-\frac{4}{t}
maclaurin e^{3x}
maclaurin\:e^{3x}
derivative of arccos(arcsin(x))
\frac{d}{dx}(\arccos(\arcsin(x)))
(\partial)/(\partial x)(3xln(y)+yln(z)-4x)
\frac{\partial\:}{\partial\:x}(3x\ln(y)+y\ln(z)-4x)
derivative of y=3sin(x^3-5x^2+8x+0.5)
derivative\:y=3\sin(x^{3}-5x^{2}+8x+0.5)
integral of 2x(x^2+1)^{-4}
\int\:2x(x^{2}+1)^{-4}dx
inverse oflaplace 7/(s^3+2s^2+9s+18)
inverselaplace\:\frac{7}{s^{3}+2s^{2}+9s+18}
integral of (e^x)/(e^{-6x)}
\int\:\frac{e^{x}}{e^{-6x}}dx
derivative of (5x/(9x^2+1))
\frac{d}{dx}(\frac{5x}{9x^{2}+1})
y^'=y-k
y^{\prime\:}=y-k
(x^2-4)((dy)/(dx))+4y=(x+2)^2
(x^{2}-4)(\frac{dy}{dx})+4y=(x+2)^{2}
slope of (-7,-7),(-3,6)
slope\:(-7,-7),(-3,6)
integral of (cos^4(x))/(sin^6(x))
\int\:\frac{\cos^{4}(x)}{\sin^{6}(x)}dx
integral of-7csc^2(x)
\int\:-7\csc^{2}(x)dx
y^{''}+y=k*(e^{(-a*t)}-e^{(-b*t)})
y^{\prime\:\prime\:}+y=k\cdot\:(e^{(-a\cdot\:t)}-e^{(-b\cdot\:t)})
integral of x^{-3}ln(x)
\int\:x^{-3}\ln(x)dx
(\partial)/(\partial s)(e^{s+t})
\frac{\partial\:}{\partial\:s}(e^{s+t})
(\partial)/(\partial x)(5*(y-3)^3*(x-6))
\frac{\partial\:}{\partial\:x}(5\cdot\:(y-3)^{3}\cdot\:(x-6))
(\partial)/(\partial y)(x^{8y})
\frac{\partial\:}{\partial\:y}(x^{8y})
(\partial)/(\partial s)(t^2)
\frac{\partial\:}{\partial\:s}(t^{2})
(\partial)/(\partial x)(x^2-y)
\frac{\partial\:}{\partial\:x}(x^{2}-y)
(\partial)/(\partial x)(7-e^{xyz})
\frac{\partial\:}{\partial\:x}(7-e^{xyz})
integral of cos(θ)cos^5(sin(θ))
\int\:\cos(θ)\cos^{5}(\sin(θ))dθ
integral of x/(sqrt(ax+b))
\int\:\frac{x}{\sqrt{ax+b}}dx
derivative of (x-14/(sqrt(x)-\sqrt{14)})
\frac{d}{dx}(\frac{x-14}{\sqrt{x}-\sqrt{14}})
(\partial)/(\partial y)(e^{x/y})
\frac{\partial\:}{\partial\:y}(e^{\frac{x}{y}})
derivative of 10^{tan(2x})
\frac{d}{dx}(10^{\tan(2x)})
y^{''}+16y=sin(4x)
y^{\prime\:\prime\:}+16y=\sin(4x)
integral of (cosh(x))/(1+sinh(x))
\int\:\frac{\cosh(x)}{1+\sinh(x)}dx
integral of 1/((e^x+1))
\int\:\frac{1}{(e^{x}+1)}dx
derivative of (1+sin(x)/(cos(x)))
\frac{d}{dx}(\frac{1+\sin(x)}{\cos(x)})
y^'-(4y)/x =-2/(x^2)
y^{\prime\:}-\frac{4y}{x}=-\frac{2}{x^{2}}
tangent of (-6x)/(x^2+1)
tangent\:\frac{-6x}{x^{2}+1}
d/(dy)(2y^3)
\frac{d}{dy}(2y^{3})
integral of (sqrt(x^3-2))/x
\int\:\frac{\sqrt{x^{3}-2}}{x}dx
derivative of f(x)=(1-2t)/(1+6t)
derivative\:f(x)=\frac{1-2t}{1+6t}
derivative of f(x)=(5x)/(7x^2+1)
derivative\:f(x)=\frac{5x}{7x^{2}+1}
limit as x approaches-2.4 of [x]
\lim\:_{x\to\:-2.4}([x])
tangent of y= 4/(1+x^2),(1,2)
tangent\:y=\frac{4}{1+x^{2}},(1,2)
integral of (6-2x)/(9-x^2)
\int\:\frac{6-2x}{9-x^{2}}dx
integral of (5x-6)/(x^2+4)
\int\:\frac{5x-6}{x^{2}+4}dx
(\partial)/(\partial x)(sin(7x^4y-7xy^4))
\frac{\partial\:}{\partial\:x}(\sin(7x^{4}y-7xy^{4}))
y^{''}-10y^'+34y=0
y^{\prime\:\prime\:}-10y^{\prime\:}+34y=0
(\partial)/(\partial x)(x^{-1/2}cos(x))
\frac{\partial\:}{\partial\:x}(x^{-\frac{1}{2}}\cos(x))
inverse oflaplace (s-1)/(s(s^2+s+1))
inverselaplace\:\frac{s-1}{s(s^{2}+s+1)}
(\partial)/(\partial x)(e^{e^{xy}})
\frac{\partial\:}{\partial\:x}(e^{e^{xy}})
derivative of x|x-2|
derivative\:x\left|x-2\right|
limit as x approaches-2 of 2|x+2|
\lim\:_{x\to\:-2}(2\left|x+2\right|)
(\partial)/(\partial x)(ln(y+x))
\frac{\partial\:}{\partial\:x}(\ln(y+x))
integral from-2 to 4 of x
\int\:_{-2}^{4}xdx
integral of 1/(1-3u)
\int\:\frac{1}{1-3u}du
(\partial)/(\partial x)(4x^2+y^2-9y)
\frac{\partial\:}{\partial\:x}(4x^{2}+y^{2}-9y)
area 4sin(x),2cos(x),[0,0.8pi]
area\:4\sin(x),2\cos(x),[0,0.8π]
integral of x/(sqrt(x^2+81))
\int\:\frac{x}{\sqrt{x^{2}+81}}dx
integral from-pi to pi of x^2sin(nx)
\int\:_{-π}^{π}x^{2}\sin(nx)dx
integral of (ln(x^{28}))/x
\int\:\frac{\ln(x^{28})}{x}dx
integral of ((1-x))/(1+x^2)
\int\:\frac{(1-x)}{1+x^{2}}dx
(\partial)/(\partial x)(4x(x^2+y^2)-4a^2x)
\frac{\partial\:}{\partial\:x}(4x(x^{2}+y^{2})-4a^{2}x)
derivative of a/x
derivative\:\frac{a}{x}
inverse oflaplace s/((s-1))
inverselaplace\:\frac{s}{(s-1)}
y(1+x^2)y^'-x(6+y^2)=0
y(1+x^{2})y^{\prime\:}-x(6+y^{2})=0
derivative of y=5x^4e^x+e^xx^5
derivative\:y=5x^{4}e^{x}+e^{x}x^{5}
limit as x approaches 1 of-6+2x^2
\lim\:_{x\to\:1}(-6+2x^{2})
f(x)=(x+2)/(x^2)
f(x)=\frac{x+2}{x^{2}}
36y^{''}-y=0,y(-6)=1,y^'(-6)=-1
36y^{\prime\:\prime\:}-y=0,y(-6)=1,y^{\prime\:}(-6)=-1
limit as x approaches-5 of-6x
\lim\:_{x\to\:-5}(-6x)
(2xy-3x^2)dx+(x^2+y)dy=0
(2xy-3x^{2})dx+(x^{2}+y)dy=0
1
..
92
93
94
95
96
..
2459