Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of y=(4x-5)/3
inverse\:y=\frac{4x-5}{3}
slope ofintercept (y-(-3))= 5/3 (x-6)
slopeintercept\:(y-(-3))=\frac{5}{3}(x-6)
inverse of 4log_{2}(x)
inverse\:4\log_{2}(x)
inverse of f(x)=-8x^2-3
inverse\:f(x)=-8x^{2}-3
domain of (sqrt(2+x))/(4-x)
domain\:\frac{\sqrt{2+x}}{4-x}
asymptotes of f(x)=(x+1)/(x^2-4)
asymptotes\:f(x)=\frac{x+1}{x^{2}-4}
simplify (-4.5)(0.9)
simplify\:(-4.5)(0.9)
inverse of f(x)=-sqrt(3-x)-2
inverse\:f(x)=-\sqrt{3-x}-2
asymptotes of f(x)=(x^2+3x)/(x^2+x-6)
asymptotes\:f(x)=\frac{x^{2}+3x}{x^{2}+x-6}
line (4,0),(20,25)
line\:(4,0),(20,25)
domain of (2x+2)/(x^2-7x-8)
domain\:\frac{2x+2}{x^{2}-7x-8}
inverse of F(x)=(x-1)/(3+2x)
inverse\:F(x)=\frac{x-1}{3+2x}
inflection 6/11 (x^2-9)^{2/3}
inflection\:\frac{6}{11}(x^{2}-9)^{\frac{2}{3}}
range of-1/3 cos(3x)
range\:-\frac{1}{3}\cos(3x)
inflection (x-2)^3(x-1)
inflection\:(x-2)^{3}(x-1)
inverse of f(x)=(7x-4)/8
inverse\:f(x)=\frac{7x-4}{8}
perpendicular 5x-6y=4,(3,5)
perpendicular\:5x-6y=4,(3,5)
periodicity of y= 8/9 cos((pix)/4)
periodicity\:y=\frac{8}{9}\cos(\frac{πx}{4})
distance (1,2),(3,4)
distance\:(1,2),(3,4)
domain of f(x)=3x^3+4x
domain\:f(x)=3x^{3}+4x
line (2,-1),(7,3)
line\:(2,-1),(7,3)
domain of f(x)=x+2
domain\:f(x)=x+2
inverse of f(x)=-sqrt(3-2x)
inverse\:f(x)=-\sqrt{3-2x}
domain of f(x)= 1/(x^2-25)
domain\:f(x)=\frac{1}{x^{2}-25}
asymptotes of f(x)=(6x+1)/(x-4)
asymptotes\:f(x)=\frac{6x+1}{x-4}
parity tan((arcsin(x/(10)))/2)
parity\:\tan(\frac{\arcsin(\frac{x}{10})}{2})
extreme f(x)=-4-x+x^2
extreme\:f(x)=-4-x+x^{2}
extreme f(x)=x^2(4-4x)^2
extreme\:f(x)=x^{2}(4-4x)^{2}
extreme f(x)=3x^2-24x+9,0<= x<= 9
extreme\:f(x)=3x^{2}-24x+9,0\le\:x\le\:9
extreme f(x)=2x^3-9x^2+12x
extreme\:f(x)=2x^{3}-9x^{2}+12x
domain of f(x)=2-cos(3x)
domain\:f(x)=2-\cos(3x)
slope ofintercept 4x+3y=21
slopeintercept\:4x+3y=21
domain of f(x)=-1/(x^2)
domain\:f(x)=-\frac{1}{x^{2}}
slope of 3x+y=3
slope\:3x+y=3
distance (-1,2),(2,-4)
distance\:(-1,2),(2,-4)
domain of 3(3/x)+12
domain\:3(\frac{3}{x})+12
y=4x+2
y=4x+2
asymptotes of (-2x^2)/((x-3)(x+2))
asymptotes\:\frac{-2x^{2}}{(x-3)(x+2)}
inverse of f(x)=(6x-2)/(x^2)
inverse\:f(x)=\frac{6x-2}{x^{2}}
intercepts of f(x)=-x^2+8x-15
intercepts\:f(x)=-x^{2}+8x-15
range of 2sin(5x-3)
range\:2\sin(5x-3)
domain of f(x)=sqrt(12-x)
domain\:f(x)=\sqrt{12-x}
inverse of f(x)= 1/x-2
inverse\:f(x)=\frac{1}{x}-2
slope of y= 2/3 x-1
slope\:y=\frac{2}{3}x-1
domain of f(x)=sqrt(3x+9)
domain\:f(x)=\sqrt{3x+9}
domain of f(x)=3sqrt(x-2)
domain\:f(x)=3\sqrt{x-2}
domain of f(x)=(x^2+3)/(x+2)
domain\:f(x)=\frac{x^{2}+3}{x+2}
critical f(x)=(x+1)(x-4)^2
critical\:f(x)=(x+1)(x-4)^{2}
line m
line\:m
inverse of f(x)=log_{b}(x)
inverse\:f(x)=\log_{b}(x)
domain of 1/(sqrt(x-6))
domain\:\frac{1}{\sqrt{x-6}}
range of f(x)=x^2-4x-12
range\:f(x)=x^{2}-4x-12
symmetry y=-x^2+16x-94
symmetry\:y=-x^{2}+16x-94
domain of f(x)=sqrt(8x)
domain\:f(x)=\sqrt{8x}
asymptotes of f(x)=(2x+3)/(x+2)
asymptotes\:f(x)=\frac{2x+3}{x+2}
extreme f(x)=e^{1/x}*(x+2)
extreme\:f(x)=e^{\frac{1}{x}}\cdot\:(x+2)
intercepts of f(x)=x^2-100sqrt(x)+6
intercepts\:f(x)=x^{2}-100\sqrt{x}+6
shift y=sin(x-pi/2)
shift\:y=\sin(x-\frac{π}{2})
slope ofintercept x=3-3y
slopeintercept\:x=3-3y
domain of log_{5}(log_{8}(x))
domain\:\log_{5}(\log_{8}(x))
vertices y=x^2+8x+18
vertices\:y=x^{2}+8x+18
domain of f(x)=x+11
domain\:f(x)=x+11
f(x)=x^2-x+1
f(x)=x^{2}-x+1
domain of sqrt(x-5)
domain\:\sqrt{x-5}
inverse of 2ln(x-1)
inverse\:2\ln(x-1)
range of cos(3x)
range\:\cos(3x)
inverse of f(x)=2(x-1)^3
inverse\:f(x)=2(x-1)^{3}
range of sqrt(2-4x)-3
range\:\sqrt{2-4x}-3
domain of 1/(5-x)+3sqrt(x-1)
domain\:\frac{1}{5-x}+3\sqrt{x-1}
parity sin(3x)
parity\:\sin(3x)
domain of f(x)= 1/(1-x^2)
domain\:f(x)=\frac{1}{1-x^{2}}
domain of f(x)=sqrt(1-1/x)
domain\:f(x)=\sqrt{1-\frac{1}{x}}
periodicity of f(x)=2cos((3x)/2)
periodicity\:f(x)=2\cos(\frac{3x}{2})
distance (-1,0),(7,3)
distance\:(-1,0),(7,3)
range of-x^2+3
range\:-x^{2}+3
domain of f(x)=sqrt(x+6)+3
domain\:f(x)=\sqrt{x+6}+3
extreme f(x)=15t+6t^2-t^3
extreme\:f(x)=15t+6t^{2}-t^{3}
domain of f(x)=(sqrt(x+1))/(x-8)
domain\:f(x)=\frac{\sqrt{x+1}}{x-8}
domain of f(x)=6x^2-x-12
domain\:f(x)=6x^{2}-x-12
asymptotes of f(x)=(-3x)/(x+2)
asymptotes\:f(x)=\frac{-3x}{x+2}
asymptotes of f(x)= 3/(x-1)
asymptotes\:f(x)=\frac{3}{x-1}
domain of (5x-10)/(27-6x)
domain\:\frac{5x-10}{27-6x}
perpendicular y= 2/5 x+1,(10,-8)
perpendicular\:y=\frac{2}{5}x+1,(10,-8)
inverse of x^2+5x
inverse\:x^{2}+5x
domain of f(x)= 1/(x^2-x+1)
domain\:f(x)=\frac{1}{x^{2}-x+1}
asymptotes of f(x)=3^{x-2}
asymptotes\:f(x)=3^{x-2}
slope ofintercept 3x+y=-2
slopeintercept\:3x+y=-2
domain of f(x)=e^{x^2}+ln(x^2)
domain\:f(x)=e^{x^{2}}+\ln(x^{2})
range of 6x+1
range\:6x+1
inverse of y=sqrt(x)+8
inverse\:y=\sqrt{x}+8
inverse of f(x)= 7/(3+e^x)
inverse\:f(x)=\frac{7}{3+e^{x}}
intercepts of f(x)=xsqrt(16-x^2)
intercepts\:f(x)=x\sqrt{16-x^{2}}
inverse of 2e^{2x}
inverse\:2e^{2x}
domain of f(x)=(4x^2-100)/(5x^2-20x-25)
domain\:f(x)=\frac{4x^{2}-100}{5x^{2}-20x-25}
inverse of f(x)=sqrt(x-3)
inverse\:f(x)=\sqrt{x-3}
inverse of f(x)=(x-1)^2-6,x>= 1
inverse\:f(x)=(x-1)^{2}-6,x\ge\:1
\begin{pmatrix}3&\end{pmatrix}\begin{pmatrix}5&\end{pmatrix}
range of (x+1)^3
range\:(x+1)^{3}
critical f(x)= x/(x+1)
critical\:f(x)=\frac{x}{x+1}
inflection cos(2x+5)
inflection\:\cos(2x+5)
1
..
39
40
41
42
43
..
1324