Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of 1/(x+10)
inverse\:\frac{1}{x+10}
extreme f(x)=3x^2
extreme\:f(x)=3x^{2}
range of-ln(x^2-1)
range\:-\ln(x^{2}-1)
domain of f(x)=sqrt(5-7x)
domain\:f(x)=\sqrt{5-7x}
domain of \sqrt[4]{x}
domain\:\sqrt[4]{x}
simplify (6.16)(2.4)
simplify\:(6.16)(2.4)
inverse of f(x)=log_{6}(3^x)
inverse\:f(x)=\log_{6}(3^{x})
perpendicular y= 1/2 x-1,(6,2)
perpendicular\:y=\frac{1}{2}x-1,(6,2)
slope ofintercept 2x+8y=24
slopeintercept\:2x+8y=24
domain of (x^3+4x^2)(6x^2-1)
domain\:(x^{3}+4x^{2})(6x^{2}-1)
asymptotes of f(x)=(x+6)/(x^2+4x-12)
asymptotes\:f(x)=\frac{x+6}{x^{2}+4x-12}
inverse of f(x)=1+x^2
inverse\:f(x)=1+x^{2}
inverse of f(x)=sqrt(2-e^{2x)}
inverse\:f(x)=\sqrt{2-e^{2x}}
symmetry 6x^3
symmetry\:6x^{3}
inverse of f(x)=x^2+2x
inverse\:f(x)=x^{2}+2x
domain of f(x)= x/(\sqrt[4]{36-x^2)}
domain\:f(x)=\frac{x}{\sqrt[4]{36-x^{2}}}
asymptotes of 1/(x+5)
asymptotes\:\frac{1}{x+5}
domain of-3/2 x-1
domain\:-\frac{3}{2}x-1
extreme f(x)=((e^x))/(7x)
extreme\:f(x)=\frac{(e^{x})}{7x}
parallel 7x-5y=-30
parallel\:7x-5y=-30
midpoint (-3,1),(-1,-1)
midpoint\:(-3,1),(-1,-1)
global x^2
global\:x^{2}
domain of 2/(x-2)-8
domain\:\frac{2}{x-2}-8
slope ofintercept y-7=-5/2 (x+6)
slopeintercept\:y-7=-\frac{5}{2}(x+6)
asymptotes of-x^3+3x^2+10x
asymptotes\:-x^{3}+3x^{2}+10x
inverse of f(x)=(8x-1)/(3x+7)
inverse\:f(x)=\frac{8x-1}{3x+7}
asymptotes of (sqrt(2+x))/(x-5)
asymptotes\:\frac{\sqrt{2+x}}{x-5}
domain of f(x)=sqrt(x)+1
domain\:f(x)=\sqrt{x}+1
distance (0,10),(8,16)
distance\:(0,10),(8,16)
domain of f(x)=-14x-8
domain\:f(x)=-14x-8
domain of (|x|)/x
domain\:\frac{\left|x\right|}{x}
domain of (4x^2+10)/((x-8)(x+6))
domain\:\frac{4x^{2}+10}{(x-8)(x+6)}
critical (2x-3)/(x-1)
critical\:\frac{2x-3}{x-1}
asymptotes of (x^2)/(1-x)
asymptotes\:\frac{x^{2}}{1-x}
parity f(x)=-6x^4+1-x
parity\:f(x)=-6x^{4}+1-x
extreme f(x)=9cos(x),0<= x<= 2pi
extreme\:f(x)=9\cos(x),0\le\:x\le\:2π
inverse of f(x)=((4x-1))/(2x+3)
inverse\:f(x)=\frac{(4x-1)}{2x+3}
domain of f(x)=(1-3t)/(5+t)
domain\:f(x)=\frac{1-3t}{5+t}
intercepts of y=sqrt(64-x^3)
intercepts\:y=\sqrt{64-x^{3}}
extreme f(x)=(x^3)/(x+1)
extreme\:f(x)=\frac{x^{3}}{x+1}
critical f(x)=x^4-8x^2
critical\:f(x)=x^{4}-8x^{2}
domain of (sqrt(x-1))^2+1
domain\:(\sqrt{x-1})^{2}+1
extreme f(x)= 3/(9-x^2)
extreme\:f(x)=\frac{3}{9-x^{2}}
domain of f(x)=2sqrt(x)+3
domain\:f(x)=2\sqrt{x}+3
parity f(x)=-x^2+3x-2
parity\:f(x)=-x^{2}+3x-2
domain of f(x)=-1/(2sqrt(7-x))
domain\:f(x)=-\frac{1}{2\sqrt{7-x}}
domain of (x^2-5x-6)/(x+1)
domain\:\frac{x^{2}-5x-6}{x+1}
critical f(x)= 1/2 x^2+4x+1
critical\:f(x)=\frac{1}{2}x^{2}+4x+1
inverse of y=(e^x)/(1+5e^x)
inverse\:y=\frac{e^{x}}{1+5e^{x}}
shift 2sin((x-pi)/3)
shift\:2\sin(\frac{x-π}{3})
asymptotes of f(x)= 2/(x^2+4)
asymptotes\:f(x)=\frac{2}{x^{2}+4}
periodicity of y=2sin(6x-pi)
periodicity\:y=2\sin(6x-π)
domain of e^{-x}-5
domain\:e^{-x}-5
intercepts of 10x-x^2-9
intercepts\:10x-x^{2}-9
inflection x^3-6x^2-96x
inflection\:x^{3}-6x^{2}-96x
domain of f(x)=csc((2pi)/5 x)-3
domain\:f(x)=\csc(\frac{2π}{5}x)-3
inverse of f(x)= 1/16 x^4
inverse\:f(x)=\frac{1}{16}x^{4}
inverse of f(x)=2x-4/3
inverse\:f(x)=2x-\frac{4}{3}
domain of 3^{-x}
domain\:3^{-x}
inverse of ln(e^x-1)-ln(2)-1
inverse\:\ln(e^{x}-1)-\ln(2)-1
intercepts of f(x)=x^4-6x^2
intercepts\:f(x)=x^{4}-6x^{2}
parallel 3x-2y=12
parallel\:3x-2y=12
asymptotes of f(x)= 1/((x-3))
asymptotes\:f(x)=\frac{1}{(x-3)}
line (1,4),(2,2)
line\:(1,4),(2,2)
domain of y=-x^2-3
domain\:y=-x^{2}-3
range of 3/2 sqrt(-x^2+2x+3)+4
range\:\frac{3}{2}\sqrt{-x^{2}+2x+3}+4
range of 1/4 \sqrt[3]{x+2}-5
range\:\frac{1}{4}\sqrt[3]{x+2}-5
parity f(x)=x^9+3x^5-x^3+x
parity\:f(x)=x^{9}+3x^{5}-x^{3}+x
distance (0,6),(2,-2)
distance\:(0,6),(2,-2)
inverse of f(x)=8(\sqrt[4]{x}-10)
inverse\:f(x)=8(\sqrt[4]{x}-10)
range of f(x)= 4/(sqrt(1-3x))
range\:f(x)=\frac{4}{\sqrt{1-3x}}
range of f(x)=-3x^2-12x-9
range\:f(x)=-3x^{2}-12x-9
asymptotes of (x^3+5)/(x^5+2)
asymptotes\:\frac{x^{3}+5}{x^{5}+2}
perpendicular y= 3/4 x-31/4 ,(1,0)
perpendicular\:y=\frac{3}{4}x-\frac{31}{4},(1,0)
inverse of f(x)=-(-12x+13)^2-1
inverse\:f(x)=-(-12x+13)^{2}-1
domain of f(x)=(x^2-2x-48)/(x+6)
domain\:f(x)=\frac{x^{2}-2x-48}{x+6}
symmetry (x+2)^2-4
symmetry\:(x+2)^{2}-4
domain of f(x)= 1/(sqrt(x^2+2))
domain\:f(x)=\frac{1}{\sqrt{x^{2}+2}}
inverse of f(x)=3sin(3x-2)
inverse\:f(x)=3\sin(3x-2)
domain of f(x)=sqrt((1-x))
domain\:f(x)=\sqrt{(1-x)}
inverse of f(x)=(6x+7)/(5x-6)
inverse\:f(x)=\frac{6x+7}{5x-6}
slope of 3x+4y=2
slope\:3x+4y=2
asymptotes of (x^2+2x-1)(2x^2-3x+6)
asymptotes\:(x^{2}+2x-1)(2x^{2}-3x+6)
distance (7,3),(12,15)
distance\:(7,3),(12,15)
domain of f(x)=sqrt(((x+4)(x+5))/(x-7))
domain\:f(x)=\sqrt{\frac{(x+4)(x+5)}{x-7}}
intercepts of x+3
intercepts\:x+3
inverse of x/(2+x)
inverse\:\frac{x}{2+x}
midpoint (4,-6),(6,8)
midpoint\:(4,-6),(6,8)
parity sin(cos(tan(x)))
parity\:\sin(\cos(\tan(x)))
distance (-4,-4),(-3,0)
distance\:(-4,-4),(-3,0)
extreme f(x)=(1+x)/(sqrt(x))
extreme\:f(x)=\frac{1+x}{\sqrt{x}}
slope of 10x-5y=3
slope\:10x-5y=3
inflection f(x)=x^2ln(x/8)
inflection\:f(x)=x^{2}\ln(\frac{x}{8})
domain of f(x)=(9-x^2)/(2x^2)
domain\:f(x)=\frac{9-x^{2}}{2x^{2}}
intercepts of x^4-x^3-13x^2+25x-12
intercepts\:x^{4}-x^{3}-13x^{2}+25x-12
inverse of f(x)=x^2-8x+4
inverse\:f(x)=x^{2}-8x+4
domain of f(x)=sqrt((9-x^2)(x+1))
domain\:f(x)=\sqrt{(9-x^{2})(x+1)}
midpoint (-8,-3),(2,3)
midpoint\:(-8,-3),(2,3)
asymptotes of f(x)=(14)/(1+3^{-x)}
asymptotes\:f(x)=\frac{14}{1+3^{-x}}
inverse of f(x)= 1/3 x+7
inverse\:f(x)=\frac{1}{3}x+7
1
..
26
27
28
29
30
..
1324