Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of 1/2 (ln(x/2)-1)
inverse\:\frac{1}{2}(\ln(\frac{x}{2})-1)
inverse of x^2-7
inverse\:x^{2}-7
slope ofintercept-1
slopeintercept\:-1
extreme x/(x^2-4)
extreme\:\frac{x}{x^{2}-4}
intercepts of f(x)=sqrt(3-x)
intercepts\:f(x)=\sqrt{3-x}
inverse of f(x)=(2x+3)/(3x-2)
inverse\:f(x)=\frac{2x+3}{3x-2}
asymptotes of f(x)= 4/((x-2)^3)
asymptotes\:f(x)=\frac{4}{(x-2)^{3}}
intercepts of f(x)=5x^2+12x+4
intercepts\:f(x)=5x^{2}+12x+4
perpendicular 1/4
perpendicular\:\frac{1}{4}
intercepts of (x^2-4)/x
intercepts\:\frac{x^{2}-4}{x}
midpoint (-2,-8),(1,2)
midpoint\:(-2,-8),(1,2)
line (5,3),(3,4)
line\:(5,3),(3,4)
inverse of y=6x-x^2
inverse\:y=6x-x^{2}
critical ((y-3))/(y^2-3y+9)
critical\:\frac{(y-3)}{y^{2}-3y+9}
extreme f(x,y)=9x^2-7
extreme\:f(x,y)=9x^{2}-7
intercepts of f(x)=x-3,-3<= x<0
intercepts\:f(x)=x-3,-3\le\:x<0
asymptotes of f(x)=(x-1)/((x+2)(x-3))
asymptotes\:f(x)=\frac{x-1}{(x+2)(x-3)}
inverse of y=log_{7}(x)
inverse\:y=\log_{7}(x)
distance (2,5),(-2,-3)
distance\:(2,5),(-2,-3)
inverse of f(x)= 1/2 x+3
inverse\:f(x)=\frac{1}{2}x+3
inverse of f(x)=2-3e^{x-4}
inverse\:f(x)=2-3e^{x-4}
critical y=e^{-x^2}
critical\:y=e^{-x^{2}}
extreme f(x)=x^2+2x+6
extreme\:f(x)=x^{2}+2x+6
symmetry-2(x+3)^2+1
symmetry\:-2(x+3)^{2}+1
asymptotes of f(x)=2^{-x}+1
asymptotes\:f(x)=2^{-x}+1
asymptotes of y=(x+8)/(x^2-9x)
asymptotes\:y=\frac{x+8}{x^{2}-9x}
inverse of f(x)=(3x-1)/(5x+4)
inverse\:f(x)=\frac{3x-1}{5x+4}
inverse of f(x)=13-x
inverse\:f(x)=13-x
asymptotes of f(x)=(x^2-25)/(-2x^2-10x)
asymptotes\:f(x)=\frac{x^{2}-25}{-2x^{2}-10x}
intercepts of f(x)=(5x)/(x^2+16)
intercepts\:f(x)=\frac{5x}{x^{2}+16}
range of sec(x)
range\:\sec(x)
slope of 75(92.5)+55
slope\:75(92.5)+55
domain of f(x)=log_{8}(x-8)
domain\:f(x)=\log_{8}(x-8)
intercepts of f(x)=(x+1)^2(x-3)^5(x-2)
intercepts\:f(x)=(x+1)^{2}(x-3)^{5}(x-2)
parity 7tan(1.55-0.31t)dt
parity\:7\tan(1.55-0.31t)dt
domain of 4/(x^2+x-2)
domain\:\frac{4}{x^{2}+x-2}
intercepts of f(x)=x^2+8x=-11
intercepts\:f(x)=x^{2}+8x=-11
domain of f(x)=(sqrt(x+39))/(x-3)
domain\:f(x)=\frac{\sqrt{x+39}}{x-3}
domain of f(x)=(x+5)/(x^2-25)
domain\:f(x)=\frac{x+5}{x^{2}-25}
slope of y= 1/3 x+4
slope\:y=\frac{1}{3}x+4
domain of f(x)=sqrt(x-1)+1
domain\:f(x)=\sqrt{x-1}+1
line 2x+3y=5
line\:2x+3y=5
intercepts of f(x)=((x+1))/(x-4)
intercepts\:f(x)=\frac{(x+1)}{x-4}
slope ofintercept x-2y=4
slopeintercept\:x-2y=4
inverse of f(x)=(20-x)^{1/4}
inverse\:f(x)=(20-x)^{\frac{1}{4}}
domain of (-2e^t)/(1-2e^t)
domain\:\frac{-2e^{t}}{1-2e^{t}}
domain of f(x)=(sqrt(x-1))/(sqrt(x-5))
domain\:f(x)=\frac{\sqrt{x-1}}{\sqrt{x-5}}
inverse of f(x)=-8/27 x^3
inverse\:f(x)=-\frac{8}{27}x^{3}
intercepts of f(x)=x^2-9
intercepts\:f(x)=x^{2}-9
inverse of f(x)=2\sqrt[3]{x-5}
inverse\:f(x)=2\sqrt[3]{x-5}
critical (4x)/(x^2+1)
critical\:\frac{4x}{x^{2}+1}
domain of f(x)= 1/7 x^2
domain\:f(x)=\frac{1}{7}x^{2}
range of f(x)=log_{2}(x)
range\:f(x)=\log_{2}(x)
asymptotes of f(x)=-1+3sec(pi/2 (x+1))
asymptotes\:f(x)=-1+3\sec(\frac{π}{2}(x+1))
asymptotes of f(x)=(x^2)/(x+3)
asymptotes\:f(x)=\frac{x^{2}}{x+3}
perpendicular y=2x+3,\at 1,2
perpendicular\:y=2x+3,\at\:1,2
critical f(x)=x-1/x
critical\:f(x)=x-\frac{1}{x}
range of 2/(x-6)+4
range\:\frac{2}{x-6}+4
range of (x+3)^2-1
range\:(x+3)^{2}-1
inflection-1/2 x^4+48x^2
inflection\:-\frac{1}{2}x^{4}+48x^{2}
perpendicular y= 1/4 x+9,\at (2-2)
perpendicular\:y=\frac{1}{4}x+9,\at\:(2-2)
asymptotes of f(x)=((-4x^2-2x+1))/(2x+3)
asymptotes\:f(x)=\frac{(-4x^{2}-2x+1)}{2x+3}
domain of f(x)= 1/(2x-8)
domain\:f(x)=\frac{1}{2x-8}
asymptotes of f(x)=(-4x^2-3x+8)/(x+1)
asymptotes\:f(x)=\frac{-4x^{2}-3x+8}{x+1}
domain of x-1,x<0
domain\:x-1,x<0
critical f(x)=3x^4-4x^3
critical\:f(x)=3x^{4}-4x^{3}
inflection f(x)=(x+4)^{4/7}
inflection\:f(x)=(x+4)^{\frac{4}{7}}
inverse of f(x)=log_{3}(9x)
inverse\:f(x)=\log_{3}(9x)
domain of (2x^2-3)/(x^2+2x+1)
domain\:\frac{2x^{2}-3}{x^{2}+2x+1}
asymptotes of f(x)= 7/(x^2+49)
asymptotes\:f(x)=\frac{7}{x^{2}+49}
inverse of f(x)=x^2+4x-3
inverse\:f(x)=x^{2}+4x-3
domain of sqrt(3x-15)
domain\:\sqrt{3x-15}
domain of x^2+81
domain\:x^{2}+81
domain of (3x+3)/(2x+4)
domain\:\frac{3x+3}{2x+4}
inverse of f(x)= 1/2 x^3-6
inverse\:f(x)=\frac{1}{2}x^{3}-6
domain of (7+1/x)/(1/x)
domain\:\frac{7+\frac{1}{x}}{\frac{1}{x}}
intercepts of f(x)=4x+5
intercepts\:f(x)=4x+5
inverse of 2log_{0.5}(-5x)+4
inverse\:2\log_{0.5}(-5x)+4
inverse of 1.25t+82
inverse\:1.25t+82
domain of f(x)=3x^3+6x^2
domain\:f(x)=3x^{3}+6x^{2}
parallel y= 3/(5x)-3,(5,-1)
parallel\:y=\frac{3}{5x}-3,(5,-1)
range of 8/(x^2-100)
range\:\frac{8}{x^{2}-100}
inflection f(x)=sqrt(x+3)
inflection\:f(x)=\sqrt{x+3}
inflection f(x)=12x^2-x^3
inflection\:f(x)=12x^{2}-x^{3}
domain of f(x)=-16x^2+64x+80
domain\:f(x)=-16x^{2}+64x+80
critical x^4-3x^2-4
critical\:x^{4}-3x^{2}-4
domain of (x^2)/(x^2-1)
domain\:\frac{x^{2}}{x^{2}-1}
domain of f(x)=x^4+10x^3+30x^2+25x
domain\:f(x)=x^{4}+10x^{3}+30x^{2}+25x
inverse of 2x^2-4x
inverse\:2x^{2}-4x
inflection x^4-4x^3
inflection\:x^{4}-4x^{3}
intercepts of f(x)=-(x+2)^2+3
intercepts\:f(x)=-(x+2)^{2}+3
slope of y+2=-1/5 (x+1)
slope\:y+2=-\frac{1}{5}(x+1)
domain of (3x+6)/(x^2-x-2)
domain\:\frac{3x+6}{x^{2}-x-2}
domain of f(x)= 8/(16-x^2)
domain\:f(x)=\frac{8}{16-x^{2}}
monotone f(x)=x^3-3x-2
monotone\:f(x)=x^{3}-3x-2
asymptotes of (3x^2+x-10)/(5x^2-27x+10)
asymptotes\:\frac{3x^{2}+x-10}{5x^{2}-27x+10}
symmetry (x^2)/(x^2-9)
symmetry\:\frac{x^{2}}{x^{2}-9}
range of f(x)=((1-x))/(2x-1)
range\:f(x)=\frac{(1-x)}{2x-1}
inverse of y=3^{2x-4}
inverse\:y=3^{2x-4}
domain of f(x)=sqrt(x^3-x^2-6x)
domain\:f(x)=\sqrt{x^{3}-x^{2}-6x}
1
..
31
32
33
34
35
..
1324