Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
intercepts of f(x)=x^2+y^2=4
intercepts\:f(x)=x^{2}+y^{2}=4
critical 2sin^2(x)
critical\:2\sin^{2}(x)
domain of f(x)= 3/(x^2+9)+7/(x^2-25)
domain\:f(x)=\frac{3}{x^{2}+9}+\frac{7}{x^{2}-25}
intercepts of f(x)=(x^2+9x+20)/(4x+16)
intercepts\:f(x)=\frac{x^{2}+9x+20}{4x+16}
critical x^3+x
critical\:x^{3}+x
critical f(x)=5x
critical\:f(x)=5x
f(x)=(x-3)^2
f(x)=(x-3)^{2}
simplify (-3.3)(-5.12)
simplify\:(-3.3)(-5.12)
midpoint (2,-6),(6,8)
midpoint\:(2,-6),(6,8)
extreme f(x)=x^2-2x+2
extreme\:f(x)=x^{2}-2x+2
inflection f(x)=x+sin(x)
inflection\:f(x)=x+\sin(x)
slope ofintercept 3x+y=3
slopeintercept\:3x+y=3
inverse of f(x)=7x-9
inverse\:f(x)=7x-9
critical 6x^4-x^3+16x^2-12
critical\:6x^{4}-x^{3}+16x^{2}-12
domain of 3sqrt(x)
domain\:3\sqrt{x}
extreme f(x)= 1/2 x^4-x^2+1
extreme\:f(x)=\frac{1}{2}x^{4}-x^{2}+1
midpoint (-3.5,15),(6,13.5)
midpoint\:(-3.5,15),(6,13.5)
asymptotes of f(x)=e^{-x}
asymptotes\:f(x)=e^{-x}
critical f(x)=9-4x
critical\:f(x)=9-4x
range of f(x)=log_{5}(x+3)
range\:f(x)=\log_{5}(x+3)
inverse of f(x)=(-1)/x
inverse\:f(x)=\frac{-1}{x}
inverse of f(x)=(\sqrt[4]{x}+4)^7
inverse\:f(x)=(\sqrt[4]{x}+4)^{7}
parity f(x)=-x^4+16x^2
parity\:f(x)=-x^{4}+16x^{2}
domain of f(x)= 4/(x-1)
domain\:f(x)=\frac{4}{x-1}
slope ofintercept y=-2/3+5
slopeintercept\:y=-\frac{2}{3}+5
slope of 6x+7y=5
slope\:6x+7y=5
range of f(x)= 7/3 x-1
range\:f(x)=\frac{7}{3}x-1
inverse of y=tan(2x+pi)
inverse\:y=\tan(2x+π)
domain of (x+7)/(x^2-49)
domain\:\frac{x+7}{x^{2}-49}
critical f(x)=6x-18
critical\:f(x)=6x-18
inverse of f(x)= 1/2 \sqrt[3]{x+4}+2
inverse\:f(x)=\frac{1}{2}\sqrt[3]{x+4}+2
range of f(x)= x/(2x-5)
range\:f(x)=\frac{x}{2x-5}
range of h(x)=(2x)/(x-11)
range\:h(x)=\frac{2x}{x-11}
slope ofintercept 2x+3y=1470
slopeintercept\:2x+3y=1470
f(x)=4x^2+9
f(x)=4x^{2}+9
inflection x-3\sqrt[3]{x}
inflection\:x-3\sqrt[3]{x}
domain of f(x)=sqrt(5+2x)
domain\:f(x)=\sqrt{5+2x}
extreme f(x)=2x^2-12x-5
extreme\:f(x)=2x^{2}-12x-5
symmetry y=3
symmetry\:y=3
inverse of f(x)=(x+9)/3
inverse\:f(x)=\frac{x+9}{3}
domain of f(x)=x^3+12x^2-3
domain\:f(x)=x^{3}+12x^{2}-3
inverse of (2ln(x)-1)/(ln(x)+2)
inverse\:\frac{2\ln(x)-1}{\ln(x)+2}
range of x^3-5x
range\:x^{3}-5x
simplify (-5.4)(0.6)
simplify\:(-5.4)(0.6)
asymptotes of f(x)=-1/2 x^2+4x+3
asymptotes\:f(x)=-\frac{1}{2}x^{2}+4x+3
inverse of f(x)=-5x
inverse\:f(x)=-5x
angle\:\begin{pmatrix}3&5\end{pmatrix},\begin{pmatrix}3&2\end{pmatrix}
range of f(x)=6^x+3
range\:f(x)=6^{x}+3
inflection f(x)=-1/((x-3))
inflection\:f(x)=-\frac{1}{(x-3)}
inflection 19x^4-114x^2
inflection\:19x^{4}-114x^{2}
inverse of f(x)=(x^3)/2+1
inverse\:f(x)=\frac{x^{3}}{2}+1
intercepts of x^3-4x^2-4x+16
intercepts\:x^{3}-4x^{2}-4x+16
asymptotes of f(x)=(2x)/(sqrt(9x^2+1))
asymptotes\:f(x)=\frac{2x}{\sqrt{9x^{2}+1}}
asymptotes of (7x)/(sqrt(x^2+10))
asymptotes\:\frac{7x}{\sqrt{x^{2}+10}}
critical f(x)=7xln(x)
critical\:f(x)=7x\ln(x)
domain of f(x)=sqrt(2x+1)-sqrt(x+1)
domain\:f(x)=\sqrt{2x+1}-\sqrt{x+1}
intercepts of f(x)=2x+y=1
intercepts\:f(x)=2x+y=1
domain of r(t)=(2t^2}{1-t^2}\frac{t+1)/t
domain\:r(t)=\frac{2t^{2}}{1-t^{2}}\frac{t+1}{t}
slope ofintercept 6x-4y=12
slopeintercept\:6x-4y=12
parity f(x)=x^5tan(x)
parity\:f(x)=x^{5}\tan(x)
intercepts of x^2-10x+16
intercepts\:x^{2}-10x+16
inverse of z
inverse\:z
domain of f(x)=x^2+9,x>=-5
domain\:f(x)=x^{2}+9,x\ge\:-5
critical f(x)=(x+7)^8
critical\:f(x)=(x+7)^{8}
extreme f(x)=(x^4)/2+3x^2-2x
extreme\:f(x)=\frac{x^{4}}{2}+3x^{2}-2x
domain of y=(x^3)/(x^2-7)
domain\:y=\frac{x^{3}}{x^{2}-7}
domain of g(x)=(x^2+5)/(x+2)
domain\:g(x)=\frac{x^{2}+5}{x+2}
inverse of f(x)=(\sqrt[5]{x+4})/8
inverse\:f(x)=\frac{\sqrt[5]{x+4}}{8}
domain of f(x)=2(x+1)^2-3
domain\:f(x)=2(x+1)^{2}-3
symmetry x^2+6x-2
symmetry\:x^{2}+6x-2
critical 11000-x^3+36x^2+700x
critical\:11000-x^{3}+36x^{2}+700x
domain of f(x)= 1/4 sqrt(x-3)+6
domain\:f(x)=\frac{1}{4}\sqrt{x-3}+6
domain of f(x)=(sqrt(x-2))/(sqrt(5-x))
domain\:f(x)=\frac{\sqrt{x-2}}{\sqrt{5-x}}
monotone f(x)=xsqrt(100-x^2)
monotone\:f(x)=x\sqrt{100-x^{2}}
domain of f(x)=2x-4
domain\:f(x)=2x-4
distance (2,1),(9,0)
distance\:(2,1),(9,0)
periodicity of f(x)=4cos(pi/3 x)
periodicity\:f(x)=4\cos(\frac{π}{3}x)
asymptotes of f(x)=(6x^2+1)/(2x^2-3)
asymptotes\:f(x)=\frac{6x^{2}+1}{2x^{2}-3}
monotone f(x)=(x+8)/(sqrt(x))
monotone\:f(x)=\frac{x+8}{\sqrt{x}}
monotone f(x)=sqrt(x-5)
monotone\:f(x)=\sqrt{x-5}
domain of f(x)=-sqrt(x^2-9)
domain\:f(x)=-\sqrt{x^{2}-9}
asymptotes of sqrt(x+2)
asymptotes\:\sqrt{x+2}
inverse of f(x)=2x^{1/5}-4
inverse\:f(x)=2x^{\frac{1}{5}}-4
domain of x+sqrt(x)
domain\:x+\sqrt{x}
inverse of f(x)=6x^5+2
inverse\:f(x)=6x^{5}+2
domain of f(x)= x/(sqrt(x-3))
domain\:f(x)=\frac{x}{\sqrt{x-3}}
parity f(x)=(x^2+a)
parity\:f(x)=(x^{2}+a)
domain of f(x)=(x+4)/(-x-3)
domain\:f(x)=\frac{x+4}{-x-3}
inverse of y=3x^2-2
inverse\:y=3x^{2}-2
domain of f(x)=(x-4)/2
domain\:f(x)=\frac{x-4}{2}
monotone f(x)=(2x-8)^{2/3}
monotone\:f(x)=(2x-8)^{\frac{2}{3}}
range of f(x)=(4x+9)/(3x-4)
range\:f(x)=\frac{4x+9}{3x-4}
asymptotes of y= 1/x
asymptotes\:y=\frac{1}{x}
symmetry 2x^2+12x
symmetry\:2x^{2}+12x
domain of sec(x)
domain\:\sec(x)
extreme f(x)=x^3+6x^2+16
extreme\:f(x)=x^{3}+6x^{2}+16
line (-10,3),(2,8)
line\:(-10,3),(2,8)
domain of 4/(x^2-1)
domain\:\frac{4}{x^{2}-1}
parity f(x)=(2x^4+5x+5)/(5x^4+4x-2)
parity\:f(x)=\frac{2x^{4}+5x+5}{5x^{4}+4x-2}
asymptotes of (x^3+3)/x
asymptotes\:\frac{x^{3}+3}{x}
1
..
18
19
20
21
22
..
1324