Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
asymptotes of f(x)=(10/9)^{-x}
asymptotes\:f(x)=(\frac{10}{9})^{-x}
parity (e^{3x})/(sin(5x))
parity\:\frac{e^{3x}}{\sin(5x)}
intercepts of y=x^2-16
intercepts\:y=x^{2}-16
domain of f(x)=sqrt(x^2+3x-4)
domain\:f(x)=\sqrt{x^{2}+3x-4}
range of 4x^2+8
range\:4x^{2}+8
domain of sqrt(2-x/(x-2))
domain\:\sqrt{2-\frac{x}{x-2}}
domain of f(x)=(x-2)^2(x+1)^3(3x-8)
domain\:f(x)=(x-2)^{2}(x+1)^{3}(3x-8)
domain of x^2-1
domain\:x^{2}-1
range of f(x)= 1/(x+1)
range\:f(x)=\frac{1}{x+1}
domain of y=(1-6x)/3
domain\:y=\frac{1-6x}{3}
line (-3,0),(0,4)
line\:(-3,0),(0,4)
simplify (-10.3)(-4.5)
simplify\:(-10.3)(-4.5)
extreme f(x)=4-3x^2
extreme\:f(x)=4-3x^{2}
f(x)=(x+1)^2
f(x)=(x+1)^{2}
inverse of f(x)=(8-t)^{1/4}
inverse\:f(x)=(8-t)^{\frac{1}{4}}
asymptotes of f(x)= 5/(4x-10)
asymptotes\:f(x)=\frac{5}{4x-10}
intercepts of (x^2)/(x^2+x-6)
intercepts\:\frac{x^{2}}{x^{2}+x-6}
extreme f(x)=-x^3+3x^2+24x-3
extreme\:f(x)=-x^{3}+3x^{2}+24x-3
domain of f(x)= 4/(y^2-y)
domain\:f(x)=\frac{4}{y^{2}-y}
range of f(x)=2x^2+5
range\:f(x)=2x^{2}+5
inverse of 3x^2-2
inverse\:3x^{2}-2
midpoint (2,-2),(5,1)
midpoint\:(2,-2),(5,1)
domain of (4x+4)/(x^2+3x+2)
domain\:\frac{4x+4}{x^{2}+3x+2}
amplitude of f(x)=0.5cos(6x)
amplitude\:f(x)=0.5\cos(6x)
range of f(x)=sqrt(x^2-3x)
range\:f(x)=\sqrt{x^{2}-3x}
domain of f(x)=cot(x)
domain\:f(x)=\cot(x)
inverse of f(x)=(x-3)/2
inverse\:f(x)=\frac{x-3}{2}
domain of y=tan(x)
domain\:y=\tan(x)
range of sqrt(x^2+4)
range\:\sqrt{x^{2}+4}
distance (0,-1),(8,7)
distance\:(0,-1),(8,7)
domain of y=(x-1)/(x^2-9)
domain\:y=\frac{x-1}{x^{2}-9}
inverse of ln(x+6)
inverse\:\ln(x+6)
range of x+3
range\:x+3
range of (0.052x)/(0.9+0.048x)
range\:\frac{0.052x}{0.9+0.048x}
slope of 5x-2y=3
slope\:5x-2y=3
asymptotes of f(x)=(x^2+x-6)/(x-4)
asymptotes\:f(x)=\frac{x^{2}+x-6}{x-4}
inverse of f(x)=((x+3))/(x-2)
inverse\:f(x)=\frac{(x+3)}{x-2}
range of 5-sqrt(x+25)
range\:5-\sqrt{x+25}
intercepts of f(x)=-2x^2+8x+7
intercepts\:f(x)=-2x^{2}+8x+7
domain of f(x)=x^2(x-3)
domain\:f(x)=x^{2}(x-3)
domain of f(x)=-3^x
domain\:f(x)=-3^{x}
domain of f(x)=2x+8
domain\:f(x)=2x+8
f(x)=log_{5}(x)
f(x)=\log_{5}(x)
inverse of f(x)=\sqrt[5]{x}-1
inverse\:f(x)=\sqrt[5]{x}-1
perpendicular y= 1/2 x
perpendicular\:y=\frac{1}{2}x
inverse of f(x)=x^3-11
inverse\:f(x)=x^{3}-11
parity f(x)=sqrt(3x-x^3)
parity\:f(x)=\sqrt{3x-x^{3}}
inflection 6x^4+2x^3-12x^2+3
inflection\:6x^{4}+2x^{3}-12x^{2}+3
domain of (x+3)^2
domain\:(x+3)^{2}
asymptotes of f(x)=(8x^2+1)/(2x^2+3x-2)
asymptotes\:f(x)=\frac{8x^{2}+1}{2x^{2}+3x-2}
domain of f(x)=(1-x)/x
domain\:f(x)=\frac{1-x}{x}
domain of 5+sqrt(x+5)
domain\:5+\sqrt{x+5}
domain of f(x)=5x-9
domain\:f(x)=5x-9
slope ofintercept-1/3 (x-(5))
slopeintercept\:-\frac{1}{3}(x-(5))
domain of 5/(x(x-3))
domain\:\frac{5}{x(x-3)}
periodicity of f(x)=2cos(1/2 x+pi)
periodicity\:f(x)=2\cos(\frac{1}{2}x+π)
extreme f(x)=cos(pix)
extreme\:f(x)=\cos(πx)
f(x)=ln(x-1)
f(x)=\ln(x-1)
simplify (5.5)(2.1)
simplify\:(5.5)(2.1)
inverse of f(x)=-2x+6
inverse\:f(x)=-2x+6
range of arccos(x)
range\:\arccos(x)
inflection f(x)=x^4-16x^2
inflection\:f(x)=x^{4}-16x^{2}
simplify (sqrt(x))/x
simplify\:\frac{\sqrt{x}}{x}
inverse of f(x)=log_{1/9}(x)
inverse\:f(x)=\log_{\frac{1}{9}}(x)
inverse of f(x)=-1/2 x+10
inverse\:f(x)=-\frac{1}{2}x+10
symmetry x=2
symmetry\:x=2
inverse of f(x)=3sqrt(x)+5
inverse\:f(x)=3\sqrt{x}+5
extreme f(x)=x^3-3x^2-45x
extreme\:f(x)=x^{3}-3x^{2}-45x
extreme f(x)=x^3+3x^2-9x-5
extreme\:f(x)=x^{3}+3x^{2}-9x-5
inverse of f(x)=x^2-12x+4
inverse\:f(x)=x^{2}-12x+4
domain of n^3+2
domain\:n^{3}+2
domain of 2x^2+2
domain\:2x^{2}+2
extreme 5x^2ln(x/4)
extreme\:5x^{2}\ln(\frac{x}{4})
distance (3,-9),(6,-2)
distance\:(3,-9),(6,-2)
midpoint (7,-2),(-4,2)
midpoint\:(7,-2),(-4,2)
inverse of sqrt(x+2)-3
inverse\:\sqrt{x+2}-3
extreme f(x)=2x^2+8x-5
extreme\:f(x)=2x^{2}+8x-5
range of f(x)=2(1/2)^x
range\:f(x)=2(\frac{1}{2})^{x}
parity f(x)=9x^3
parity\:f(x)=9x^{3}
domain of f(x)=(sqrt(x-1))/(x^2-4)
domain\:f(x)=\frac{\sqrt{x-1}}{x^{2}-4}
extreme-0.2t^2+2.4t+98.3
extreme\:-0.2t^{2}+2.4t+98.3
domain of log_{b}(x)
domain\:\log_{b}(x)
slope of 7x-4y=28
slope\:7x-4y=28
inverse of (x+6)^2
inverse\:(x+6)^{2}
monotone f(x)=2x^3+3x^2-2
monotone\:f(x)=2x^{3}+3x^{2}-2
range of-x^2+2
range\:-x^{2}+2
domain of (5x+35)/(7x)
domain\:\frac{5x+35}{7x}
monotone 2x^3-3x^2-12x+7
monotone\:2x^{3}-3x^{2}-12x+7
inflection f(x)=12x(x-4)
inflection\:f(x)=12x(x-4)
inverse of f(x)=\sqrt[3]{x}-4
inverse\:f(x)=\sqrt[3]{x}-4
domain of f(x)= 1/2 x+3
domain\:f(x)=\frac{1}{2}x+3
inverse of f(x)=x^{1/5}+7
inverse\:f(x)=x^{\frac{1}{5}}+7
inflection (x+1)/(x-1)
inflection\:\frac{x+1}{x-1}
symmetry y(X)=X^4-X^2+3
symmetry\:y(X)=X^{4}-X^{2}+3
inverse of f(x)=3x+4y=6
inverse\:f(x)=3x+4y=6
inverse of \sqrt[3]{4x}
inverse\:\sqrt[3]{4x}
inflection 2/(x^3)
inflection\:\frac{2}{x^{3}}
critical f(x)=-4x^2+8x+1
critical\:f(x)=-4x^{2}+8x+1
distance (-2,4),(4,0)
distance\:(-2,4),(4,0)
monotone f(x)=x^2sqrt(1-x)
monotone\:f(x)=x^{2}\sqrt{1-x}
1
..
17
18
19
20
21
..
1324