Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of sqrt(-7x+7)
domain\:\sqrt{-7x+7}
asymptotes of f(x)=arctan((x^2)/(x+5))
asymptotes\:f(x)=\arctan(\frac{x^{2}}{x+5})
domain of f(x)=4x+1
domain\:f(x)=4x+1
extreme f(x)=2x+3\sqrt[3]{x^2}
extreme\:f(x)=2x+3\sqrt[3]{x^{2}}
domain of f(x)=x^3-4x
domain\:f(x)=x^{3}-4x
inverse of f(x)=(\sqrt[4]{x-5})/9
inverse\:f(x)=\frac{\sqrt[4]{x-5}}{9}
domain of x-6/(8/x)
domain\:x-\frac{6}{\frac{8}{x}}
domain of 7/(sqrt(x))
domain\:\frac{7}{\sqrt{x}}
inverse of y=5^{(x-3)}-11
inverse\:y=5^{(x-3)}-11
inverse of f(x)=\sqrt[5]{5x-2}
inverse\:f(x)=\sqrt[5]{5x-2}
perpendicular 3y=x+4
perpendicular\:3y=x+4
asymptotes of y= x/(x^2-9)
asymptotes\:y=\frac{x}{x^{2}-9}
intercepts of f(x)=2x+5y=320
intercepts\:f(x)=2x+5y=320
domain of (x+4)/(x^2-1)
domain\:\frac{x+4}{x^{2}-1}
line y=-6
line\:y=-6
inverse of f(x)=(5x)/6+9
inverse\:f(x)=\frac{5x}{6}+9
intercepts of f(x)=3x^2-x-2
intercepts\:f(x)=3x^{2}-x-2
intercepts of (2x^2-5x+5)/(x-2)
intercepts\:\frac{2x^{2}-5x+5}{x-2}
simplify (1.4)(6.7)
simplify\:(1.4)(6.7)
line (29,14),(24,-6)
line\:(29,14),(24,-6)
intercepts of f(x)=-x^2+2x+3
intercepts\:f(x)=-x^{2}+2x+3
asymptotes of f(x)=(x^2+5x+6)/(x^2-9)
asymptotes\:f(x)=\frac{x^{2}+5x+6}{x^{2}-9}
line (x-2)/(-1)
line\:\frac{x-2}{-1}
asymptotes of f(x)= 1/(x-5)+6
asymptotes\:f(x)=\frac{1}{x-5}+6
distance (-3,4),(2,6)
distance\:(-3,4),(2,6)
slope of (x+y)/4+14=-17
slope\:\frac{x+y}{4}+14=-17
intercepts of f(x)= 2/3 x-6
intercepts\:f(x)=\frac{2}{3}x-6
frequency f(x)=3cos(pix)-2
frequency\:f(x)=3\cos(πx)-2
domain of f(x)=(-2)/(x+4)
domain\:f(x)=\frac{-2}{x+4}
inverse of f(x)=9+(10+x)^{1/2}
inverse\:f(x)=9+(10+x)^{\frac{1}{2}}
inverse of 3\sqrt[3]{x}
inverse\:3\sqrt[3]{x}
intercepts of x^3-3x^2+4x+8
intercepts\:x^{3}-3x^{2}+4x+8
parity sqrt(x+2)
parity\:\sqrt{x+2}
domain of 4x^2+1
domain\:4x^{2}+1
range of-(x-1)^3+2
range\:-(x-1)^{3}+2
perpendicular 3y-6=12
perpendicular\:3y-6=12
domain of f(x)=-2(0.5)^x
domain\:f(x)=-2(0.5)^{x}
slope ofintercept 4x+6y=-30
slopeintercept\:4x+6y=-30
slope of m=3
slope\:m=3
inverse of f(x)=-3+sqrt(9-x^2)
inverse\:f(x)=-3+\sqrt{9-x^{2}}
range of f(x)=(x^2-6x+12)/(x-4)
range\:f(x)=\frac{x^{2}-6x+12}{x-4}
slope ofintercept 6x+y=-1
slopeintercept\:6x+y=-1
range of sqrt(7-2x)+2
range\:\sqrt{7-2x}+2
shift f(x)=sin(2(x+pi))
shift\:f(x)=\sin(2(x+π))
domain of y=sqrt(6-x-4x^2-x^3)
domain\:y=\sqrt{6-x-4x^{2}-x^{3}}
domain of f(x)=(x-7)/(5x^2)
domain\:f(x)=\frac{x-7}{5x^{2}}
domain of f(x)=(3x-9)/(x^2-6x+9)
domain\:f(x)=\frac{3x-9}{x^{2}-6x+9}
inverse of f(x)= 3/5 x-12
inverse\:f(x)=\frac{3}{5}x-12
domain of (2x^2+16x-18)/(x^2+x-6)
domain\:\frac{2x^{2}+16x-18}{x^{2}+x-6}
shift 3cos(x-pi/4)-1
shift\:3\cos(x-\frac{π}{4})-1
inflection f(x)=x^4-50x^2+4
inflection\:f(x)=x^{4}-50x^{2}+4
critical f(x)=2x-4
critical\:f(x)=2x-4
line (12,10),(14,-1.5)
line\:(12,10),(14,-1.5)
parity x-1
parity\:x-1
angle\:\begin{pmatrix}-8&7\end{pmatrix},\begin{pmatrix}-8&-2\end{pmatrix}
domain of f(x)=sqrt(t^2+9)
domain\:f(x)=\sqrt{t^{2}+9}
intercepts of (x^2-6x+12)/(x-4)
intercepts\:\frac{x^{2}-6x+12}{x-4}
extreme f(x)=3x^3-36x-6
extreme\:f(x)=3x^{3}-36x-6
f(x)=sin^2(2x)
f(x)=\sin^{2}(2x)
range of f(x)=sqrt(x)-4
range\:f(x)=\sqrt{x}-4
inverse of f(x)=6-5x^2
inverse\:f(x)=6-5x^{2}
critical xsqrt(4-x^2)
critical\:x\sqrt{4-x^{2}}
extreme f(x)=(t^2-36)^{1/3}
extreme\:f(x)=(t^{2}-36)^{\frac{1}{3}}
asymptotes of 7/((x-4)^3)
asymptotes\:\frac{7}{(x-4)^{3}}
range of f(x)=x^7
range\:f(x)=x^{7}
domain of \sqrt[3]{-2x-8}
domain\:\sqrt[3]{-2x-8}
slope ofintercept 5x+6y=5
slopeintercept\:5x+6y=5
asymptotes of f(x)=(x^2-4x)/(x^2-16)
asymptotes\:f(x)=\frac{x^{2}-4x}{x^{2}-16}
domain of sqrt(3x+24)
domain\:\sqrt{3x+24}
critical f(x)=4x^2-6x^4
critical\:f(x)=4x^{2}-6x^{4}
domain of f(x)=sqrt(-40-8x)-4
domain\:f(x)=\sqrt{-40-8x}-4
extreme f(x)=(x+2)^3(x-4)^4
extreme\:f(x)=(x+2)^{3}(x-4)^{4}
y=x-1
y=x-1
domain of f(x)=sqrt(4x+9)
domain\:f(x)=\sqrt{4x+9}
intercepts of f(x)=-1/2 tan(2pix)
intercepts\:f(x)=-\frac{1}{2}\tan(2πx)
inverse of sqrt(x-7)
inverse\:\sqrt{x-7}
asymptotes of f(x)=x^2(x+3)^2
asymptotes\:f(x)=x^{2}(x+3)^{2}
range of f(x)=x^2-10x+24
range\:f(x)=x^{2}-10x+24
inflection sqrt(x)-ln(x)
inflection\:\sqrt{x}-\ln(x)
domain of (2+x)/(x+3)
domain\:\frac{2+x}{x+3}
y=-3
y=-3
domain of f(x)=x^4-10x^2+25
domain\:f(x)=x^{4}-10x^{2}+25
slope of x+5y=7
slope\:x+5y=7
critical f(x)=x^2-x-3
critical\:f(x)=x^{2}-x-3
parallel y=2x-8,(-4,1)
parallel\:y=2x-8,(-4,1)
extreme f(x)=x^2-x-2
extreme\:f(x)=x^{2}-x-2
inverse of f(x)=(x-2)^5
inverse\:f(x)=(x-2)^{5}
parallel 4x-2y=10
parallel\:4x-2y=10
inverse of 3x-1
inverse\:3x-1
f(x)= 2/x
f(x)=\frac{2}{x}
asymptotes of (2x^2-5x-12)/(3x^2-11x-4)
asymptotes\:\frac{2x^{2}-5x-12}{3x^{2}-11x-4}
inverse of f(x)=sqrt(x+3)-2
inverse\:f(x)=\sqrt{x+3}-2
inverse of f(x)= 2/(3+x)
inverse\:f(x)=\frac{2}{3+x}
inverse of 4-3/(2x)
inverse\:4-\frac{3}{2x}
range of 6(x+7)-3
range\:6(x+7)-3
extreme-18x+25
extreme\:-18x+25
asymptotes of y=-3tan(1/2 x)
asymptotes\:y=-3\tan(\frac{1}{2}x)
domain of (7x-3)/(7x)
domain\:\frac{7x-3}{7x}
slope of 4x+3y=5
slope\:4x+3y=5
parallel 4x-2y=7
parallel\:4x-2y=7
1
..
20
21
22
23
24
..
1324