Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)=2sqrt(x+5)
range\:f(x)=2\sqrt{x+5}
domain of f(x)=(x-4)/(3x+5)
domain\:f(x)=\frac{x-4}{3x+5}
asymptotes of f(x)= x/((x-1)^2)
asymptotes\:f(x)=\frac{x}{(x-1)^{2}}
intercepts of x^3+2x^2-9x-18
intercepts\:x^{3}+2x^{2}-9x-18
domain of f(x)=sqrt(x+4)-(sqrt(8-x))/x
domain\:f(x)=\sqrt{x+4}-\frac{\sqrt{8-x}}{x}
asymptotes of f(x)=(-x^2+6x+1)/(x-2)
asymptotes\:f(x)=\frac{-x^{2}+6x+1}{x-2}
domain of f(x)=sqrt(15-5x)
domain\:f(x)=\sqrt{15-5x}
asymptotes of f(x)= 3/(5x)
asymptotes\:f(x)=\frac{3}{5x}
domain of 1/(|t|)
domain\:\frac{1}{\left|t\right|}
simplify (-3.8)(8)
simplify\:(-3.8)(8)
extreme f(x)=14x^4-84x^2
extreme\:f(x)=14x^{4}-84x^{2}
intercepts of y=6(x+3)^2+3
intercepts\:y=6(x+3)^{2}+3
inverse of (e^x-e^{-x})/2
inverse\:\frac{e^{x}-e^{-x}}{2}
inverse of f(x)=(7x)/(2x-3)
inverse\:f(x)=\frac{7x}{2x-3}
symmetry 5/x
symmetry\:\frac{5}{x}
domain of f(x)=sqrt((-2x+8))-6
domain\:f(x)=\sqrt{(-2x+8)}-6
domain of (4x+5)/(3x-4)
domain\:\frac{4x+5}{3x-4}
critical f(x)=x^3-3x^2-9x+2
critical\:f(x)=x^{3}-3x^{2}-9x+2
range of f(x)=((x-4))/(x-2)
range\:f(x)=\frac{(x-4)}{x-2}
line m=-7,(1,1)
line\:m=-7,(1,1)
range of f(x)=(-1)/((x+3)^2)-4
range\:f(x)=\frac{-1}{(x+3)^{2}}-4
inverse of 1/6 x^3-4
inverse\:\frac{1}{6}x^{3}-4
perpendicular y=3x+3,(3,2)
perpendicular\:y=3x+3,(3,2)
inverse of f(x)=-5x-3
inverse\:f(x)=-5x-3
intercepts of 2x^2+5x-3
intercepts\:2x^{2}+5x-3
slope ofintercept 15x-3y=1
slopeintercept\:15x-3y=1
asymptotes of f(x)=((2x^2))/((4x^2-1))
asymptotes\:f(x)=\frac{(2x^{2})}{(4x^{2}-1)}
domain of sqrt((x+2)/(3x-5))
domain\:\sqrt{\frac{x+2}{3x-5}}
domain of f(x)=x-5/(g(x))(x)=sqrt(x+6)
domain\:f(x)=x-\frac{5}{g(x)}(x)=\sqrt{x+6}
range of (3+x)/(x-2)
range\:\frac{3+x}{x-2}
critical sqrt(9-x)
critical\:\sqrt{9-x}
domain of f(x)= 1/(sqrt(17-t))
domain\:f(x)=\frac{1}{\sqrt{17-t}}
range of sqrt(x+3)-1
range\:\sqrt{x+3}-1
domain of f(x)=-7/(2x^{3/2)}
domain\:f(x)=-\frac{7}{2x^{\frac{3}{2}}}
simplify (2.8)(1.3)
simplify\:(2.8)(1.3)
inverse of f(x)=3sin(2x)
inverse\:f(x)=3\sin(2x)
critical (x^2)/(x^2-81)
critical\:\frac{x^{2}}{x^{2}-81}
extreme f(x)=x^2e^x
extreme\:f(x)=x^{2}e^{x}
extreme f(x)=-x^3+6x^2
extreme\:f(x)=-x^{3}+6x^{2}
domain of f(x)=sqrt(3x-24)
domain\:f(x)=\sqrt{3x-24}
parity f(x)=sqrt(1/(2x^{3x-1))}
parity\:f(x)=\sqrt{\frac{1}{2x^{3x-1}}}
inverse of 1/2 (x+4)^2-2
inverse\:\frac{1}{2}(x+4)^{2}-2
extreme f(x)=5+4x-x^3
extreme\:f(x)=5+4x-x^{3}
y=(x+2)^2
y=(x+2)^{2}
midpoint (2,-5),(6,7)
midpoint\:(2,-5),(6,7)
line (2,4),(3,7)
line\:(2,4),(3,7)
simplify (3.5)(5.3)
simplify\:(3.5)(5.3)
asymptotes of f(x)=(x^2-25)/(x+3)
asymptotes\:f(x)=\frac{x^{2}-25}{x+3}
parity cos(tan(x))
parity\:\cos(\tan(x))
range of f(x)=x+y^2=9
range\:f(x)=x+y^{2}=9
domain of (x^3+7)/6
domain\:\frac{x^{3}+7}{6}
critical x^2+2.9698x-9.28
critical\:x^{2}+2.9698x-9.28
domain of y=sqrt(x-3)+4
domain\:y=\sqrt{x-3}+4
domain of (e^x)/(sqrt(1-e^x))
domain\:\frac{e^{x}}{\sqrt{1-e^{x}}}
range of sqrt(4x^2-4)
range\:\sqrt{4x^{2}-4}
f(x)=xe^x
f(x)=xe^{x}
domain of f(x)=sqrt(x+6)
domain\:f(x)=\sqrt{x+6}
asymptotes of (x^4+11)/(x^2+10x+26)
asymptotes\:\frac{x^{4}+11}{x^{2}+10x+26}
domain of 1/x-1
domain\:\frac{1}{x}-1
inverse of e^{6x-1}
inverse\:e^{6x-1}
asymptotes of f(x)= 1/(x(x-3))
asymptotes\:f(x)=\frac{1}{x(x-3)}
slope of 3x-7y=4
slope\:3x-7y=4
inverse of f(x)=(x-2)/(x+3)
inverse\:f(x)=\frac{x-2}{x+3}
range of f(x)= 1/2 \sqrt[3]{x}
range\:f(x)=\frac{1}{2}\sqrt[3]{x}
domain of (4+5x)/(x-1)
domain\:\frac{4+5x}{x-1}
domain of f(x)=ln(1+(x+1)/(x+4))
domain\:f(x)=\ln(1+\frac{x+1}{x+4})
inverse of f(x)=-x^3+4
inverse\:f(x)=-x^{3}+4
domain of f(x)=-2x
domain\:f(x)=-2x
inverse of cos(4x)
inverse\:\cos(4x)
periodicity of f(x)=3cos(x)
periodicity\:f(x)=3\cos(x)
inflection 1/4 x^4-2x^2
inflection\:\frac{1}{4}x^{4}-2x^{2}
domain of f(x)=(x+5)/(x^2-9)
domain\:f(x)=\frac{x+5}{x^{2}-9}
inverse of f(x)=(x-1)^2+5
inverse\:f(x)=(x-1)^{2}+5
intercepts of y=x^2
intercepts\:y=x^{2}
inflection f(x)=-2x^6+15x^5
inflection\:f(x)=-2x^{6}+15x^{5}
domain of (x-3)/(4+5x)
domain\:\frac{x-3}{4+5x}
line m=-2,(2,-4)
line\:m=-2,(2,-4)
inflection f(x)=6x^4+16x^3
inflection\:f(x)=6x^{4}+16x^{3}
slope ofintercept 3x+2y=12
slopeintercept\:3x+2y=12
inverse of 0.00225x^2+5999.9325x+0.50625
inverse\:0.00225x^{2}+5999.9325x+0.50625
inverse of f(x)=8x+3
inverse\:f(x)=8x+3
critical x^{16/17}-x^{33/17}
critical\:x^{\frac{16}{17}}-x^{\frac{33}{17}}
asymptotes of f(x)=ln(x+2)
asymptotes\:f(x)=\ln(x+2)
inverse of f(x)=(x+4)/(x+3)
inverse\:f(x)=\frac{x+4}{x+3}
line m=-2,(9,-7)
line\:m=-2,(9,-7)
inverse of cos(3x),0<= x<= 2pi
inverse\:\cos(3x),0\le\:x\le\:2π
slope of y=x^2+5x
slope\:y=x^{2}+5x
domain of f(x)=(x^2-4x)/(x^2-16)
domain\:f(x)=\frac{x^{2}-4x}{x^{2}-16}
range of 3/(x+2)
range\:\frac{3}{x+2}
parity f(x)=\sqrt[3]{7x}
parity\:f(x)=\sqrt[3]{7x}
inflection ((e^x-e^{-x}))/2
inflection\:\frac{(e^{x}-e^{-x})}{2}
periodicity of f(t)=-5sin(7t-1)
periodicity\:f(t)=-5\sin(7t-1)
inflection f(x)=x^2+2x+1
inflection\:f(x)=x^{2}+2x+1
line y=x+4
line\:y=x+4
asymptotes of f(x)=3^x-6
asymptotes\:f(x)=3^{x}-6
inverse of f(x)=(2x+9)/(x+2)
inverse\:f(x)=\frac{2x+9}{x+2}
inverse of 1/3 (x-5)
inverse\:\frac{1}{3}(x-5)
domain of f(x)=(3x)/(sqrt(x-1))
domain\:f(x)=\frac{3x}{\sqrt{x-1}}
slope ofintercept y=4x-9
slopeintercept\:y=4x-9
slope ofintercept 2x+2=7y
slopeintercept\:2x+2=7y
1
..
92
93
94
95
96
..
1324