Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of f(x)=sqrt(t+14)
domain\:f(x)=\sqrt{t+14}
intercepts of f(x)=2x^2-2x+1
intercepts\:f(x)=2x^{2}-2x+1
line (-4,-2),(-8,3)
line\:(-4,-2),(-8,3)
distance (2,7),(8,-1)
distance\:(2,7),(8,-1)
domain of f(x)=5x^4
domain\:f(x)=5x^{4}
line (6,4),(4,1)
line\:(6,4),(4,1)
domain of f(x)=x^4-4x^3+2x^2+4x-3
domain\:f(x)=x^{4}-4x^{3}+2x^{2}+4x-3
parity sec(arcos(2/3))
parity\:\sec(ar\cos(\frac{2}{3}))
inverse of f(x)=4(x-11)^2
inverse\:f(x)=4(x-11)^{2}
inverse of f(x)=4-1/3 x
inverse\:f(x)=4-\frac{1}{3}x
inflection x^2ln(x/8)
inflection\:x^{2}\ln(\frac{x}{8})
domain of (4x)/(x-3)
domain\:\frac{4x}{x-3}
inflection f(x)=e^{-2x^2}
inflection\:f(x)=e^{-2x^{2}}
extreme f(x)=5x^2-15x
extreme\:f(x)=5x^{2}-15x
asymptotes of f(x)=(6x-7)/(x-4)
asymptotes\:f(x)=\frac{6x-7}{x-4}
distance (-2,-3),(4,0)
distance\:(-2,-3),(4,0)
inverse of f(x)=(x+4)^{1/4}
inverse\:f(x)=(x+4)^{\frac{1}{4}}
line (0,100),(-20,0)
line\:(0,100),(-20,0)
monotone (x^2-1)/(x^3)
monotone\:\frac{x^{2}-1}{x^{3}}
inverse of f(x)=(-4x-6)/(-7x-9)
inverse\:f(x)=\frac{-4x-6}{-7x-9}
domain of f(x)=ln(x-10)
domain\:f(x)=\ln(x-10)
domain of f(x)= 1/(x^2-3x-4)
domain\:f(x)=\frac{1}{x^{2}-3x-4}
domain of-2x^2+7
domain\:-2x^{2}+7
domain of x^3+3x^2-4
domain\:x^{3}+3x^{2}-4
domain of f(x)=(x+1)/(x^2+6x+5)
domain\:f(x)=\frac{x+1}{x^{2}+6x+5}
domain of f(x)=|x-2|+3
domain\:f(x)=\left|x-2\right|+3
range of f(x)= 1/(x^2+1)
range\:f(x)=\frac{1}{x^{2}+1}
asymptotes of f(x)=((x^2-16))/((x-2))
asymptotes\:f(x)=\frac{(x^{2}-16)}{(x-2)}
inverse of (5x^3-11)/9
inverse\:\frac{5x^{3}-11}{9}
\begin{pmatrix}2&\end{pmatrix}\begin{pmatrix}4&\end{pmatrix}
extreme f(x)=2x^3+12x^2-30x
extreme\:f(x)=2x^{3}+12x^{2}-30x
periodicity of-1/3 cos(1/3 x)
periodicity\:-\frac{1}{3}\cos(\frac{1}{3}x)
inverse of ln(x-4)
inverse\:\ln(x-4)
intercepts of 1/4 x^3-2
intercepts\:\frac{1}{4}x^{3}-2
domain of f(x)=sqrt(\sqrt{x-6)-6}
domain\:f(x)=\sqrt{\sqrt{x-6}-6}
midpoint (-2,-4),(4,6)
midpoint\:(-2,-4),(4,6)
domain of f(x)=sqrt(1-5^t)
domain\:f(x)=\sqrt{1-5^{t}}
range of f(x)=(6-x)^{1/8}
range\:f(x)=(6-x)^{\frac{1}{8}}
intercepts of f(x)=-(x+1)^2+4
intercepts\:f(x)=-(x+1)^{2}+4
inverse of sin(2x)
inverse\:\sin(2x)
symmetry x^2+2x
symmetry\:x^{2}+2x
extreme f(x)=x^3-12
extreme\:f(x)=x^{3}-12
asymptotes of f(x)= 1/((x+3)^2)
asymptotes\:f(x)=\frac{1}{(x+3)^{2}}
asymptotes of f(x)=(2x+2)/(x-2)
asymptotes\:f(x)=\frac{2x+2}{x-2}
critical f(x)=(12-4x)e^x
critical\:f(x)=(12-4x)e^{x}
range of f(x)=-1/(sqrt(x))
range\:f(x)=-\frac{1}{\sqrt{x}}
domain of 49x+64
domain\:49x+64
parity y=(x/(sqrt(a^2-x^2))-arcsin(x/a))
parity\:y=(\frac{x}{\sqrt{a^{2}-x^{2}}}-\arcsin(\frac{x}{a}))
range of f(x)=(1/5)^x
range\:f(x)=(\frac{1}{5})^{x}
extreme f(x)=x^2-4x+10
extreme\:f(x)=x^{2}-4x+10
domain of f(x)= 1/(sqrt(1-x))
domain\:f(x)=\frac{1}{\sqrt{1-x}}
simplify (2.5)(8.3)
simplify\:(2.5)(8.3)
intercepts of (x+4)/(x-2)
intercepts\:\frac{x+4}{x-2}
critical f(x)=7(-4x^2+16)^2+9
critical\:f(x)=7(-4x^{2}+16)^{2}+9
domain of g(x)=sqrt(x^2-2x-8)
domain\:g(x)=\sqrt{x^{2}-2x-8}
domain of f(x)=-(21)/((5+x)^2)
domain\:f(x)=-\frac{21}{(5+x)^{2}}
domain of f(x)=sqrt(25-x^2)-sqrt(x+1)
domain\:f(x)=\sqrt{25-x^{2}}-\sqrt{x+1}
amplitude of 2tan((pix)/2)
amplitude\:2\tan(\frac{πx}{2})
line Y(x)-5=(-1}{2(\frac{x-1)/2)}
line\:Y(x)-5=\frac{-1}{2(\frac{x-1}{2})}
slope ofintercept y=2x+1
slopeintercept\:y=2x+1
domain of f(x)=(x^2-1)/(sqrt(x-2))
domain\:f(x)=\frac{x^{2}-1}{\sqrt{x-2}}
midpoint (1,-3),(5,7)
midpoint\:(1,-3),(5,7)
inflection (x-9)/(x-3)
inflection\:\frac{x-9}{x-3}
intercepts of f(x)=(x^2-12x+36)/(2x-12)
intercepts\:f(x)=\frac{x^{2}-12x+36}{2x-12}
range of f(x)=-2sqrt(x)+6
range\:f(x)=-2\sqrt{x}+6
inverse of f(x)=(x+7)/(x-6)
inverse\:f(x)=\frac{x+7}{x-6}
range of f(x)=9-(x-2)^2
range\:f(x)=9-(x-2)^{2}
inverse of f(x)=6x^3-3
inverse\:f(x)=6x^{3}-3
parity f(x)=(x^2+4)/(x^3-x)
parity\:f(x)=\frac{x^{2}+4}{x^{3}-x}
frequency p(t)=161sin(6t+pi)
frequency\:p(t)=161\sin(6t+π)
critical f(x)=-125/4 x^4+x
critical\:f(x)=-\frac{125}{4}x^{4}+x
asymptotes of f(x)=(x+2)/(1-x)
asymptotes\:f(x)=\frac{x+2}{1-x}
inverse of f(x)=2t+5
inverse\:f(x)=2t+5
slope of 3x-2y=-6
slope\:3x-2y=-6
critical 7x^2-8x
critical\:7x^{2}-8x
inverse of f(x)=ln(3x)+4
inverse\:f(x)=\ln(3x)+4
parity arctan((x-1)/(x+1))
parity\:\arctan(\frac{x-1}{x+1})
line (0,2),(4,3)
line\:(0,2),(4,3)
parity f(x)=2x-x^3
parity\:f(x)=2x-x^{3}
range of cos(x)
range\:\cos(x)
domain of f(x)=x
domain\:f(x)=x
domain of f(x)= 1/4 tan(4x)
domain\:f(x)=\frac{1}{4}\tan(4x)
range of 1-cos(x)
range\:1-\cos(x)
perpendicular y=4x-2,(5,-11)
perpendicular\:y=4x-2,(5,-11)
domain of f(x)=-x^2-2x+3
domain\:f(x)=-x^{2}-2x+3
inverse of y=(2x+11)/(3x+19)
inverse\:y=\frac{2x+11}{3x+19}
inverse of f(x)=13x-3
inverse\:f(x)=13x-3
domain of f(x)=(5x+3)/(3x-8)
domain\:f(x)=\frac{5x+3}{3x-8}
parity g(x)=-3x^2-5
parity\:g(x)=-3x^{2}-5
domain of f(x)=6x^3-3x^2+x-2
domain\:f(x)=6x^{3}-3x^{2}+x-2
midpoint (6,-2),(4,6)
midpoint\:(6,-2),(4,6)
intercepts of y=x^2-5x+6
intercepts\:y=x^{2}-5x+6
asymptotes of f(x)=((x^3))/(x-1)
asymptotes\:f(x)=\frac{(x^{3})}{x-1}
intercepts of (-2x-8)/(5x+20)
intercepts\:\frac{-2x-8}{5x+20}
inverse of sqrt(x-10)
inverse\:\sqrt{x-10}
extreme f(x)=-sqrt(x^2+2x+5)
extreme\:f(x)=-\sqrt{x^{2}+2x+5}
domain of f(x)= 1/((x+3)^{1/2)}
domain\:f(x)=\frac{1}{(x+3)^{\frac{1}{2}}}
domain of f(x)= 3/(sqrt(x-5))
domain\:f(x)=\frac{3}{\sqrt{x-5}}
domain of (2x+3)/(x-1)
domain\:\frac{2x+3}{x-1}
domain of 5/6 (x+1)^2(x-1)(x-4)
domain\:\frac{5}{6}(x+1)^{2}(x-1)(x-4)
1
..
90
91
92
93
94
..
1324