Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
perpendicular y+1= 1/3 x,(2,-3)
perpendicular\:y+1=\frac{1}{3}x,(2,-3)
domain of f(x)= 1/(ln(x-1))
domain\:f(x)=\frac{1}{\ln(x-1)}
intercepts of f(x)=(x-2)/(x^2-4)
intercepts\:f(x)=\frac{x-2}{x^{2}-4}
perpendicular y= 1/2 x+5
perpendicular\:y=\frac{1}{2}x+5
domain of 2x+7
domain\:2x+7
asymptotes of f(x)=(x^2-2x-8)/(x+1)
asymptotes\:f(x)=\frac{x^{2}-2x-8}{x+1}
domain of f(x)=9sqrt(x)+8
domain\:f(x)=9\sqrt{x}+8
intercepts of f(x)=-x^2+2x+4
intercepts\:f(x)=-x^{2}+2x+4
domain of (2x^2-2x-24)/(x^2-4x+3)
domain\:\frac{2x^{2}-2x-24}{x^{2}-4x+3}
slope of 5x-y=1
slope\:5x-y=1
simplify (0)(20.2)
simplify\:(0)(20.2)
extreme f(x)=(x-4)/(3x-x^2)
extreme\:f(x)=\frac{x-4}{3x-x^{2}}
range of sqrt(x+5)
range\:\sqrt{x+5}
inverse of 3x-5
inverse\:3x-5
intercepts of f(x)=x^3-24x^2+144x
intercepts\:f(x)=x^{3}-24x^{2}+144x
range of f(x)=e^{(6x-1/6)}+6
range\:f(x)=e^{(6x-\frac{1}{6})}+6
simplify (-4.4)(0.8)
simplify\:(-4.4)(0.8)
inverse of f(x)=(x-1)/(x+1)
inverse\:f(x)=\frac{x-1}{x+1}
periodicity of f(x)=cos(pi/3 t)
periodicity\:f(x)=\cos(\frac{π}{3}t)
asymptotes of f(y)= x/(x+4)
asymptotes\:f(y)=\frac{x}{x+4}
inverse of s/((s+4)(s+8))
inverse\:\frac{s}{(s+4)(s+8)}
domain of (7x)/(5+9x)
domain\:\frac{7x}{5+9x}
asymptotes of f(x)=((-x-9))/((x+4))
asymptotes\:f(x)=\frac{(-x-9)}{(x+4)}
inflection f(x)=(x+8)/(x-8)
inflection\:f(x)=\frac{x+8}{x-8}
intercepts of f(x)=x^2+x-6
intercepts\:f(x)=x^{2}+x-6
monotone f(x)=x^3+3x^2-4
monotone\:f(x)=x^{3}+3x^{2}-4
inverse of x/(1-x)
inverse\:\frac{x}{1-x}
domain of (-1+3sqrt(8x+1))/4
domain\:\frac{-1+3\sqrt{8x+1}}{4}
shift 3tan(2x+pi/5)
shift\:3\tan(2x+\frac{π}{5})
domain of f(x)=sqrt(-1-x)
domain\:f(x)=\sqrt{-1-x}
domain of f(x)=2x-5x^2
domain\:f(x)=2x-5x^{2}
asymptotes of e^{sqrt(2)cos(x)}
asymptotes\:e^{\sqrt{2}\cos(x)}
critical x(x-2)^3
critical\:x(x-2)^{3}
range of f(x)=(x-4)^2
range\:f(x)=(x-4)^{2}
symmetry-4x^2-24x-28
symmetry\:-4x^{2}-24x-28
domain of f(x)= 7/(x-14)
domain\:f(x)=\frac{7}{x-14}
slope of y=mx+b
slope\:y=mx+b
inflection f(x)=(x-1)/(x+3)
inflection\:f(x)=\frac{x-1}{x+3}
inflection 1-e^{-x}x^2
inflection\:1-e^{-x}x^{2}
inverse of f(x)=(2-x^3)^5
inverse\:f(x)=(2-x^{3})^{5}
inverse of f(x)=5x+8
inverse\:f(x)=5x+8
domain of f(x)=sqrt(x^2+4x+4)
domain\:f(x)=\sqrt{x^{2}+4x+4}
simplify (5.4)(2.1)
simplify\:(5.4)(2.1)
extreme f(x)=3cos(x),0<= x<= 2pi
extreme\:f(x)=3\cos(x),0\le\:x\le\:2π
domain of f(x)=log_{3}(x-3)
domain\:f(x)=\log_{3}(x-3)
asymptotes of (x^3-x^2+x-1)/(x-x^3)
asymptotes\:\frac{x^{3}-x^{2}+x-1}{x-x^{3}}
midpoint (-5,3),(1,-3)
midpoint\:(-5,3),(1,-3)
inflection (2x)/(x-1)
inflection\:\frac{2x}{x-1}
distance (-6,-10),(-2,-10)
distance\:(-6,-10),(-2,-10)
inverse of sqrt(x-1)
inverse\:\sqrt{x-1}
symmetry x^2+y^2=16
symmetry\:x^{2}+y^{2}=16
domain of-1/(2sqrt(5-x))
domain\:-\frac{1}{2\sqrt{5-x}}
critical x^2+2x+3
critical\:x^{2}+2x+3
domain of f(x)=(-1)/(2sqrt(5-x))
domain\:f(x)=\frac{-1}{2\sqrt{5-x}}
symmetry x^4-34x^2-72
symmetry\:x^{4}-34x^{2}-72
distance (-4,5),(-7,7)
distance\:(-4,5),(-7,7)
domain of f(x)=sqrt(ln(x^2-6x+9))
domain\:f(x)=\sqrt{\ln(x^{2}-6x+9)}
domain of f(x)=-x+8
domain\:f(x)=-x+8
inverse of sqrt(x^2+5x)
inverse\:\sqrt{x^{2}+5x}
domain of xsqrt(9-x^2)
domain\:x\sqrt{9-x^{2}}
domain of f(x)=sqrt(3x-18)
domain\:f(x)=\sqrt{3x-18}
perpendicular 2x-8
perpendicular\:2x-8
intercepts of f(x)=7x-3y=21
intercepts\:f(x)=7x-3y=21
inverse of f(x)= 5/6 x-3/4
inverse\:f(x)=\frac{5}{6}x-\frac{3}{4}
inverse of 3/x-2
inverse\:\frac{3}{x}-2
domain of f(x)=((x-6))/(x^2-x-56)
domain\:f(x)=\frac{(x-6)}{x^{2}-x-56}
symmetry-(x+4)^2
symmetry\:-(x+4)^{2}
intercepts of f(x)=6
intercepts\:f(x)=6
domain of f(x)=-3
domain\:f(x)=-3
slope ofintercept 10x+19y=-13
slopeintercept\:10x+19y=-13
domain of f(x)=sqrt(-6x+12)
domain\:f(x)=\sqrt{-6x+12}
domain of f(x)=5x-8
domain\:f(x)=5x-8
asymptotes of f(x)=(x(x-2)^2)/((x+3)^2)
asymptotes\:f(x)=\frac{x(x-2)^{2}}{(x+3)^{2}}
domain of f(x)= 7/x+2
domain\:f(x)=\frac{7}{x}+2
inverse of f(x)= 4/x-4
inverse\:f(x)=\frac{4}{x}-4
extreme f(x)=2x^3-6x
extreme\:f(x)=2x^{3}-6x
symmetry (2x^2)/(x^2-1)
symmetry\:\frac{2x^{2}}{x^{2}-1}
shift f(x)=2sin(x-pi/3)
shift\:f(x)=2\sin(x-\frac{π}{3})
slope ofintercept 6x+5y=5
slopeintercept\:6x+5y=5
asymptotes of f(x)=(x-3)/(x^2-10x+21)
asymptotes\:f(x)=\frac{x-3}{x^{2}-10x+21}
range of f(x)=sqrt(x^2+1)
range\:f(x)=\sqrt{x^{2}+1}
inverse of f(x)=3*2^{2x-2}+1
inverse\:f(x)=3\cdot\:2^{2x-2}+1
slope ofintercept x-y=8
slopeintercept\:x-y=8
intercepts of f(x)=-x+2
intercepts\:f(x)=-x+2
inflection x/(x^2-3x-4)
inflection\:\frac{x}{x^{2}-3x-4}
range of f(x)=x^2-8x+16
range\:f(x)=x^{2}-8x+16
domain of f(x)= 4/(x-3)
domain\:f(x)=\frac{4}{x-3}
inflection f(x)=x^3-x
inflection\:f(x)=x^{3}-x
domain of f(x)=((x^2+4))/(x^2+4x-5)
domain\:f(x)=\frac{(x^{2}+4)}{x^{2}+4x-5}
domain of sqrt(x+6)
domain\:\sqrt{x+6}
distance (2,2),(1,1)
distance\:(2,2),(1,1)
asymptotes of f(x)=6csc(1/2 pix-1/6 pi)
asymptotes\:f(x)=6\csc(\frac{1}{2}πx-\frac{1}{6}π)
asymptotes of f(x)=(x^2-x-6)/(x^2-7x+10)
asymptotes\:f(x)=\frac{x^{2}-x-6}{x^{2}-7x+10}
intercepts of f(x)=5x^2+10x+6
intercepts\:f(x)=5x^{2}+10x+6
domain of f(x)=2x^2-x-3
domain\:f(x)=2x^{2}-x-3
inverse of f(x)= 6/(x+4)
inverse\:f(x)=\frac{6}{x+4}
critical f(x)=x^4-4x^2
critical\:f(x)=x^{4}-4x^{2}
critical y=x^2-3x+2
critical\:y=x^{2}-3x+2
asymptotes of f(x)=(8x-2)/(x^2-2x-63)
asymptotes\:f(x)=\frac{8x-2}{x^{2}-2x-63}
inverse of f(x)=x^2+1,x<= 0
inverse\:f(x)=x^{2}+1,x\le\:0
1
..
86
87
88
89
90
..
839