Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
slope ofintercept y=5x
slopeintercept\:y=5x
inverse of f(x)=2x^2-5
inverse\:f(x)=2x^{2}-5
f(x)=3x+2
f(x)=3x+2
inverse of f(x)= 1/2 \sqrt[3]{x-3}+5
inverse\:f(x)=\frac{1}{2}\sqrt[3]{x-3}+5
intercepts of x^4-1
intercepts\:x^{4}-1
domain of f(x)= 6/(x+2)
domain\:f(x)=\frac{6}{x+2}
perpendicular y=4x
perpendicular\:y=4x
asymptotes of x^2ln(x)
asymptotes\:x^{2}\ln(x)
asymptotes of f(x)=(-6x-12)/(x^2+x-12)
asymptotes\:f(x)=\frac{-6x-12}{x^{2}+x-12}
intercepts of y=-1/7 x+8
intercepts\:y=-\frac{1}{7}x+8
range of f(x)=sqrt(-2x+25)
range\:f(x)=\sqrt{-2x+25}
critical ln(x-5)
critical\:\ln(x-5)
domain of f(x)=(6x)/(x+2)
domain\:f(x)=\frac{6x}{x+2}
extreme f(x)=-5x^3+25x^2+15
extreme\:f(x)=-5x^{3}+25x^{2}+15
inverse of g(x)=x-25
inverse\:g(x)=x-25
parallel y=-7x+21
parallel\:y=-7x+21
distance (16/3 , 1/5),(1/3 , 6/5)
distance\:(\frac{16}{3},\frac{1}{5}),(\frac{1}{3},\frac{6}{5})
shift-3sin(x-pi/4)
shift\:-3\sin(x-\frac{π}{4})
asymptotes of log_{7}(-x)
asymptotes\:\log_{7}(-x)
asymptotes of f(x)= 1/(x+2)
asymptotes\:f(x)=\frac{1}{x+2}
amplitude of 6sin(t+4)
amplitude\:6\sin(t+4)
inflection f(x)=4x^3-6x^2+5x-5
inflection\:f(x)=4x^{3}-6x^{2}+5x-5
symmetry (11)/((x+2)(x-2))
symmetry\:\frac{11}{(x+2)(x-2)}
domain of y= 9/(sqrt(t))
domain\:y=\frac{9}{\sqrt{t}}
domain of y=(x^2+1)/(x+1)
domain\:y=\frac{x^{2}+1}{x+1}
intercepts of y=-1/2 x^2+4x-2
intercepts\:y=-\frac{1}{2}x^{2}+4x-2
midpoint (2.8,1.1),(-3.4,5.7)
midpoint\:(2.8,1.1),(-3.4,5.7)
critical f(x)=(x+4)e^{-2x}
critical\:f(x)=(x+4)e^{-2x}
critical f(x)=x^8(x-4)^7
critical\:f(x)=x^{8}(x-4)^{7}
domain of (3/(x+1)-2)/(1/4-2/(x^2-1))
domain\:\frac{\frac{3}{x+1}-2}{\frac{1}{4}-\frac{2}{x^{2}-1}}
amplitude of sin(x)
amplitude\:\sin(x)
domain of 5/(e^{-x)-5}
domain\:\frac{5}{e^{-x}-5}
domain of f(x)=(6x)/(7x-3)
domain\:f(x)=\frac{6x}{7x-3}
domain of f(x)=(x^2+2x)/(2x^2+3x-2)
domain\:f(x)=\frac{x^{2}+2x}{2x^{2}+3x-2}
domain of f(x)=x^2log_{e}(x)
domain\:f(x)=x^{2}\log_{e}(x)
inverse of f(x)=(14x^{(3)})-13
inverse\:f(x)=(14x^{(3)})-13
asymptotes of f(x)= 1/(x+3)
asymptotes\:f(x)=\frac{1}{x+3}
periodicity of f(x)=-3sin(x-pi/4)+2
periodicity\:f(x)=-3\sin(x-\frac{π}{4})+2
inverse of f(x)=(3x-5)/x
inverse\:f(x)=\frac{3x-5}{x}
domain of f(x)=x+1/(x-1)
domain\:f(x)=x+\frac{1}{x-1}
critical 2x^3-6x
critical\:2x^{3}-6x
inverse of f(x)=(5x+7)/(4x-5)
inverse\:f(x)=\frac{5x+7}{4x-5}
critical sqrt(x^2+4)
critical\:\sqrt{x^{2}+4}
parity x/((x+1)^n)
parity\:\frac{x}{(x+1)^{n}}
extreme f(x)=3x^3+5x^2
extreme\:f(x)=3x^{3}+5x^{2}
inverse of f(x)=5^{x-3}
inverse\:f(x)=5^{x-3}
global 3x^2+5x+2
global\:3x^{2}+5x+2
range of (5x+9)/(4x-5)
range\:\frac{5x+9}{4x-5}
domain of y=x^3-5x^2+3x+2
domain\:y=x^{3}-5x^{2}+3x+2
range of f(x)=x^2-8x+7
range\:f(x)=x^{2}-8x+7
slope of-13
slope\:-13
range of f(x)=(4x-3)/(6-5x)
range\:f(x)=\frac{4x-3}{6-5x}
distance (3,-2),(3,2)
distance\:(3,-2),(3,2)
domain of f(x)=sqrt((x-1)/(x+3))
domain\:f(x)=\sqrt{\frac{x-1}{x+3}}
domain of f(x)=5^x-4
domain\:f(x)=5^{x}-4
asymptotes of f(x)=(1-7x)/(1+4x)
asymptotes\:f(x)=\frac{1-7x}{1+4x}
line m=-1,(-0.5,1.5)
line\:m=-1,(-0.5,1.5)
critical f(x)=(x-5)^{6/7}
critical\:f(x)=(x-5)^{\frac{6}{7}}
extreme f(x)=3x^2+4x+1
extreme\:f(x)=3x^{2}+4x+1
inverse of f(x)=sqrt(10-3x)
inverse\:f(x)=\sqrt{10-3x}
domain of f(x)= x/6
domain\:f(x)=\frac{x}{6}
inflection (x^2)/(x^2-1)
inflection\:\frac{x^{2}}{x^{2}-1}
domain of ln((x+1)/(x-1))
domain\:\ln(\frac{x+1}{x-1})
intercepts of f(x)=25x-1300
intercepts\:f(x)=25x-1300
domain of f(x)=12-x
domain\:f(x)=12-x
domain of f(x)=(x+8)/(x-10)
domain\:f(x)=\frac{x+8}{x-10}
inverse of f(x)= 1/(2x)
inverse\:f(x)=\frac{1}{2x}
extreme f(x)=-6/(x^2+3)
extreme\:f(x)=-\frac{6}{x^{2}+3}
range of sqrt(|x|-1)+3
range\:\sqrt{\left|x\right|-1}+3
domain of f(x)=(x-6)^2
domain\:f(x)=(x-6)^{2}
asymptotes of f(x)=sqrt(12-3x)
asymptotes\:f(x)=\sqrt{12-3x}
intercepts of (2x^2+7x-15)/(3x^2-14x+15)
intercepts\:\frac{2x^{2}+7x-15}{3x^{2}-14x+15}
domain of (x-5)/x
domain\:\frac{x-5}{x}
inverse of 9-x^3
inverse\:9-x^{3}
asymptotes of f(x)=((1-4x^2))/(2x+4)
asymptotes\:f(x)=\frac{(1-4x^{2})}{2x+4}
domain of f(x)=x-sqrt(2-x^2)
domain\:f(x)=x-\sqrt{2-x^{2}}
parallel 2x+3y=5,(-1/2 , 5/3)
parallel\:2x+3y=5,(-\frac{1}{2},\frac{5}{3})
distance (-2,3),(3,0)
distance\:(-2,3),(3,0)
symmetry y=0.5x^2-2x-2
symmetry\:y=0.5x^{2}-2x-2
intercepts of f(x)=(x-2)^3+4
intercepts\:f(x)=(x-2)^{3}+4
extreme f(x)=3+x^{2/3}
extreme\:f(x)=3+x^{\frac{2}{3}}
critical (x^2-2x-2)/(x-3)
critical\:\frac{x^{2}-2x-2}{x-3}
symmetry x^2-2x+4
symmetry\:x^{2}-2x+4
domain of f(x)=(5-x)/(x^2-4x)
domain\:f(x)=\frac{5-x}{x^{2}-4x}
perpendicular 9x+8y=5
perpendicular\:9x+8y=5
range of sqrt(-4x^2+12)
range\:\sqrt{-4x^{2}+12}
domain of f(x)=(x+7)/(x^2-16)
domain\:f(x)=\frac{x+7}{x^{2}-16}
inverse of f(x)=8x^3=2
inverse\:f(x)=8x^{3}=2
inverse of f(x)=2e^x-1/(e^x)
inverse\:f(x)=2e^{x}-\frac{1}{e^{x}}
amplitude of-3/2 cos(3x-1/2)+2
amplitude\:-\frac{3}{2}\cos(3x-\frac{1}{2})+2
range of (x-1)/(2x+1)
range\:\frac{x-1}{2x+1}
periodicity of 3sin(x)
periodicity\:3\sin(x)
range of f(y)=2x+b
range\:f(y)=2x+b
range of \sqrt[3]{x-9}
range\:\sqrt[3]{x-9}
extreme f(x)=x^2+7x-4
extreme\:f(x)=x^{2}+7x-4
domain of f(x)= 1/(x^2-2x-8)
domain\:f(x)=\frac{1}{x^{2}-2x-8}
inverse of f(x)=log_{2}(x+3)
inverse\:f(x)=\log_{2}(x+3)
asymptotes of f(x)=(3x-15)/(-x^2+25)
asymptotes\:f(x)=\frac{3x-15}{-x^{2}+25}
domain of 7/(x-1)
domain\:\frac{7}{x-1}
inverse of f(x)=7^x
inverse\:f(x)=7^{x}
1
..
68
69
70
71
72
..
1324