Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
critical ln(4)+ln(x)
critical\:\ln(4)+\ln(x)
intercepts of f(x)=2x^2-4x-6
intercepts\:f(x)=2x^{2}-4x-6
(f(x)\circ g(x)),f(x)=x^2,g(x)=x+1
(f(x)\circ\:g(x)),f(x)=x^{2},g(x)=x+1
domain of f(x)=sqrt(4x+1)
domain\:f(x)=\sqrt{4x+1}
intercepts of 8x^4
intercepts\:8x^{4}
asymptotes of (3x^3+4x+5)/(2x^3+3x-5)
asymptotes\:\frac{3x^{3}+4x+5}{2x^{3}+3x-5}
inverse of f(x)=x^2-6x+8
inverse\:f(x)=x^{2}-6x+8
asymptotes of (-x^2)/(x^2+4)
asymptotes\:\frac{-x^{2}}{x^{2}+4}
inverse of 9x^2
inverse\:9x^{2}
intercepts of y=x+2
intercepts\:y=x+2
domain of f(x)=(x^2-x+1)/(x^3+1)
domain\:f(x)=\frac{x^{2}-x+1}{x^{3}+1}
inverse of f(x)=(x+5)/(x-3)
inverse\:f(x)=\frac{x+5}{x-3}
intercepts of f(x)=y+5=2(x+1)y+5=2(x+1)
intercepts\:f(x)=y+5=2(x+1)y+5=2(x+1)
midpoint (2,-1),(-6,0)
midpoint\:(2,-1),(-6,0)
inverse of f(x)=1+\sqrt[3]{x-2}
inverse\:f(x)=1+\sqrt[3]{x-2}
asymptotes of f(x)=(-2x-9)/(4x-19)
asymptotes\:f(x)=\frac{-2x-9}{4x-19}
perpendicular y=8x-13,(2,3)
perpendicular\:y=8x-13,(2,3)
domain of f(x)=((x+3))/(x^2-4x+3)
domain\:f(x)=\frac{(x+3)}{x^{2}-4x+3}
asymptotes of f(x)=xe^x
asymptotes\:f(x)=xe^{x}
inflection f(x)=-x^4-5x^3+7x-3
inflection\:f(x)=-x^{4}-5x^{3}+7x-3
periodicity of sin(x)
periodicity\:\sin(x)
inverse of f(x)=\sqrt[3]{(x-3)/2}
inverse\:f(x)=\sqrt[3]{\frac{x-3}{2}}
domain of f(x)=5(x^2-1)
domain\:f(x)=5(x^{2}-1)
domain of (-3)/x
domain\:\frac{-3}{x}
inverse of (-x+4)/(2x+8)
inverse\:\frac{-x+4}{2x+8}
domain of f(x)= x/(x^2+16x+60)
domain\:f(x)=\frac{x}{x^{2}+16x+60}
slope ofintercept 3x-5=0
slopeintercept\:3x-5=0
symmetry-4x^2+16x+47
symmetry\:-4x^{2}+16x+47
line m=0,(3,2)
line\:m=0,(3,2)
domain of log_{2}(7-x)
domain\:\log_{2}(7-x)
distance (6,0),(0,3)
distance\:(6,0),(0,3)
domain of 1/10 x-1/8
domain\:\frac{1}{10}x-\frac{1}{8}
slope ofintercept 9x-5y-15=0
slopeintercept\:9x-5y-15=0
f(x)=(1/3)^x
f(x)=(\frac{1}{3})^{x}
parity sqrt((1+sin(y))/(1-sin(y)))
parity\:\sqrt{\frac{1+\sin(y)}{1-\sin(y)}}
line (3,4),(11,17)
line\:(3,4),(11,17)
domain of f(x)=sqrt((x+1)/(x-2))
domain\:f(x)=\sqrt{\frac{x+1}{x-2}}
line m=0,(2,-1)
line\:m=0,(2,-1)
inverse of (x-5)^2
inverse\:(x-5)^{2}
domain of 4/(x-5)
domain\:\frac{4}{x-5}
f(x)=sqrt(x)
f(x)=\sqrt{x}
periodicity of f(x)=-4cos(5x-9)-7
periodicity\:f(x)=-4\cos(5x-9)-7
range of sqrt(36-x^2)
range\:\sqrt{36-x^{2}}
domain of sqrt(-x^2+x+2)
domain\:\sqrt{-x^{2}+x+2}
inverse of f(x)=-4/(x-3)-1
inverse\:f(x)=-\frac{4}{x-3}-1
range of f(x)=sqrt((4x)/(x^2+1))
range\:f(x)=\sqrt{\frac{4x}{x^{2}+1}}
asymptotes of f(x)=(x^2)/(x^2+9)
asymptotes\:f(x)=\frac{x^{2}}{x^{2}+9}
slope of (-1.13)(-4-5)
slope\:(-1.13)(-4-5)
intercepts of 1/(x+1)
intercepts\:\frac{1}{x+1}
range of (10)/x
range\:\frac{10}{x}
domain of f(x)= 6/x
domain\:f(x)=\frac{6}{x}
inverse of f(x)=-2x^3+3
inverse\:f(x)=-2x^{3}+3
parallel 5x-4y=2,(4,-2)
parallel\:5x-4y=2,(4,-2)
midpoint (-8,-1),(-8,-3)
midpoint\:(-8,-1),(-8,-3)
domain of f(x)= 3/(4sqrt(5/2+3/2 x))
domain\:f(x)=\frac{3}{4\sqrt{\frac{5}{2}+\frac{3}{2}x}}
distance (0,1),(4,4)
distance\:(0,1),(4,4)
inverse of f(x)=(2x)/5+2
inverse\:f(x)=\frac{2x}{5}+2
inverse of f(x)=25x+200
inverse\:f(x)=25x+200
domain of 1/(2sqrt(a))
domain\:\frac{1}{2\sqrt{a}}
domain of (x^2-1)/(x+1)
domain\:\frac{x^{2}-1}{x+1}
parity x^x
parity\:x^{x}
midpoint (sqrt(98),5),(sqrt(2),-5)
midpoint\:(\sqrt{98},5),(\sqrt{2},-5)
monotone f(x)=3x^2-6x
monotone\:f(x)=3x^{2}-6x
inverse of f(x)= 4/(x+9)
inverse\:f(x)=\frac{4}{x+9}
domain of f(x)=(x-6)/(x+1)
domain\:f(x)=\frac{x-6}{x+1}
domain of sqrt(|x|)
domain\:\sqrt{\left|x\right|}
domain of f(x)=3x-6
domain\:f(x)=3x-6
inverse of f(x)= 1/2 x+8
inverse\:f(x)=\frac{1}{2}x+8
inverse of f(x)=sqrt(x-7)-9
inverse\:f(x)=\sqrt{x-7}-9
inflection f(x)=(x^2-4x)^2
inflection\:f(x)=(x^{2}-4x)^{2}
slope of 3x+7y=4y-2
slope\:3x+7y=4y-2
range of x/(2x^2+9x+4)
range\:\frac{x}{2x^{2}+9x+4}
slope ofintercept-2x+y=4
slopeintercept\:-2x+y=4
inflection f(x)=x^7+7x^3+1
inflection\:f(x)=x^{7}+7x^{3}+1
perpendicular y=-4x-6,(9,4)
perpendicular\:y=-4x-6,(9,4)
inverse of f(x)=arccos(x)
inverse\:f(x)=\arccos(x)
domain of \sqrt[3]{x}-3
domain\:\sqrt[3]{x}-3
asymptotes of f(x)=(x+3)/((x-1)(x+3))
asymptotes\:f(x)=\frac{x+3}{(x-1)(x+3)}
line (3,2),(5,8)
line\:(3,2),(5,8)
intercepts of f(x)=x^4+3x^3-3x^2-11x-6
intercepts\:f(x)=x^{4}+3x^{3}-3x^{2}-11x-6
range of (7x-2)/3
range\:\frac{7x-2}{3}
extreme f(x)=3x-1
extreme\:f(x)=3x-1
extreme y=x^4-4x^2
extreme\:y=x^{4}-4x^{2}
domain of f(x)=\sqrt[3]{x+12}
domain\:f(x)=\sqrt[3]{x+12}
domain of f(x)=sqrt(x^2-100)
domain\:f(x)=\sqrt{x^{2}-100}
range of \sqrt[3]{x+6}+1
range\:\sqrt[3]{x+6}+1
inverse of f(x)=(x-7)/(x+7)
inverse\:f(x)=\frac{x-7}{x+7}
domain of h(x)=ln(x)+ln(7-x)
domain\:h(x)=\ln(x)+\ln(7-x)
critical f(x)=8sqrt(x)-6x
critical\:f(x)=8\sqrt{x}-6x
asymptotes of f(x)=2-(1+x)/x
asymptotes\:f(x)=2-\frac{1+x}{x}
inverse of 3^{2x+4}+3
inverse\:3^{2x+4}+3
inverse of f(x)=3-sqrt(2x+1)
inverse\:f(x)=3-\sqrt{2x+1}
slope ofintercept (y-8)=7(x-10)
slopeintercept\:(y-8)=7(x-10)
domain of (2x)/(12-sqrt(x^2-25))
domain\:\frac{2x}{12-\sqrt{x^{2}-25}}
inverse of f(x)=(3-2x)/(4+5x)
inverse\:f(x)=\frac{3-2x}{4+5x}
perpendicular y=4x-9,\at b=5
perpendicular\:y=4x-9,\at\:b=5
inverse of f(x)=x+2sqrt(x)
inverse\:f(x)=x+2\sqrt{x}
asymptotes of (-3)/(x^2)
asymptotes\:\frac{-3}{x^{2}}
domain of g(x)=-1/(2sqrt(9-x))
domain\:g(x)=-\frac{1}{2\sqrt{9-x}}
domain of f(x)=-2x^2+24x
domain\:f(x)=-2x^{2}+24x
1
..
67
68
69
70
71
..
1324