Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of x/(x^2+4)
range\:\frac{x}{x^{2}+4}
domain of 4tan(2x+pi)+1
domain\:4\tan(2x+π)+1
domain of f(x)=3x+sqrt(x)-2
domain\:f(x)=3x+\sqrt{x}-2
extreme f(x)=-1/81 x^2+100
extreme\:f(x)=-\frac{1}{81}x^{2}+100
slope of 4x-2y=8
slope\:4x-2y=8
inverse of f(x)=(x-3)^2+5
inverse\:f(x)=(x-3)^{2}+5
range of (3x)/(2-x)
range\:\frac{3x}{2-x}
asymptotes of f(x)=(4x)/(x+5)
asymptotes\:f(x)=\frac{4x}{x+5}
parity f(x)=2-x^6-x^8
parity\:f(x)=2-x^{6}-x^{8}
domain of f(x)=sqrt(8-2x)
domain\:f(x)=\sqrt{8-2x}
inverse of f(x)=-\sqrt[3]{(2x+4)/3}
inverse\:f(x)=-\sqrt[3]{\frac{2x+4}{3}}
shift y=6cos(2x+pi/2)
shift\:y=6\cos(2x+\frac{π}{2})
extreme f(x)=-3x^2-6x+8
extreme\:f(x)=-3x^{2}-6x+8
domain of f(x)=(sqrt(x-4))/(x-8)
domain\:f(x)=\frac{\sqrt{x-4}}{x-8}
inverse of y=2x-x^2
inverse\:y=2x-x^{2}
domain of-sqrt(25-x^2)
domain\:-\sqrt{25-x^{2}}
inverse of (x-1)/(x+1)
inverse\:\frac{x-1}{x+1}
slope of y-5=-3(x-17)
slope\:y-5=-3(x-17)
extreme f(x)=sqrt(81-x^2)
extreme\:f(x)=\sqrt{81-x^{2}}
inverse of f(x)=sqrt(3x+1)
inverse\:f(x)=\sqrt{3x+1}
periodicity of 3cos(x+pi/2)
periodicity\:3\cos(x+\frac{π}{2})
domain of f(x)=(x-4)/(x+2)
domain\:f(x)=\frac{x-4}{x+2}
intercepts of (2x+3)/x
intercepts\:\frac{2x+3}{x}
inverse of f(x)=\sqrt[3]{2x-1}
inverse\:f(x)=\sqrt[3]{2x-1}
perpendicular 3y=5x-1
perpendicular\:3y=5x-1
domain of f(x)=sqrt((x-3)/(x-8))
domain\:f(x)=\sqrt{\frac{x-3}{x-8}}
inverse of f(x)= 7/(x+2)
inverse\:f(x)=\frac{7}{x+2}
monotone (9x)/(16-x^2)
monotone\:\frac{9x}{16-x^{2}}
range of f(x)=x^2-11,x>= 0
range\:f(x)=x^{2}-11,x\ge\:0
inverse of f(x)=-6x+3
inverse\:f(x)=-6x+3
inverse of 5+\sqrt[3]{x}
inverse\:5+\sqrt[3]{x}
inverse of f(x)=-x^2+9
inverse\:f(x)=-x^{2}+9
critical 5x^2-48x+20
critical\:5x^{2}-48x+20
parallel y= 3/4 x-6
parallel\:y=\frac{3}{4}x-6
intercepts of f(y)=y=2x+5
intercepts\:f(y)=y=2x+5
inverse of 34
inverse\:34
slope ofintercept 11x-7y=56
slopeintercept\:11x-7y=56
shift 5cos(x)
shift\:5\cos(x)
inverse of (2x-1)/(4+5x)
inverse\:\frac{2x-1}{4+5x}
midpoint (2,-3),(0,1)
midpoint\:(2,-3),(0,1)
amplitude of 6cos(x)
amplitude\:6\cos(x)
shift f(x)= 1/3 sin(x+pi/4)
shift\:f(x)=\frac{1}{3}\sin(x+\frac{π}{4})
slope ofintercept 5x+y=7
slopeintercept\:5x+y=7
domain of f(x)=ln((x+1)/(x-1))
domain\:f(x)=\ln(\frac{x+1}{x-1})
inverse of y=x^2-6x
inverse\:y=x^{2}-6x
range of (2x^2+3x-2)/(x-2)
range\:\frac{2x^{2}+3x-2}{x-2}
asymptotes of (x^2-81)/(x(x-9))
asymptotes\:\frac{x^{2}-81}{x(x-9)}
distance (4,6),(-3,-7)
distance\:(4,6),(-3,-7)
domain of f(x)=-2x^2-2x+30
domain\:f(x)=-2x^{2}-2x+30
inverse of f(x)=2+3/(sqrt(5y-4))
inverse\:f(x)=2+\frac{3}{\sqrt{5y-4}}
asymptotes of (2^x-8)/(4-2^x)
asymptotes\:\frac{2^{x}-8}{4-2^{x}}
inflection 3sin(x)+3cos(x)
inflection\:3\sin(x)+3\cos(x)
domain of 5/(x^2+1)
domain\:\frac{5}{x^{2}+1}
inverse of f(x)=-1/2 x+4
inverse\:f(x)=-\frac{1}{2}x+4
domain of f(x)=5+(25)/x
domain\:f(x)=5+\frac{25}{x}
inverse of-cos(x)
inverse\:-\cos(x)
intercepts of f(x)=1-2x^2
intercepts\:f(x)=1-2x^{2}
inverse of f(x)=(2x)/(x-5)
inverse\:f(x)=\frac{2x}{x-5}
range of (2x+7)/(x+2)
range\:\frac{2x+7}{x+2}
inverse of f(x)=sqrt(x-3)+5
inverse\:f(x)=\sqrt{x-3}+5
perpendicular 4x+5y=6
perpendicular\:4x+5y=6
amplitude of y=-4/5 cos(x)
amplitude\:y=-\frac{4}{5}\cos(x)
asymptotes of f(x)=(x^2-9)/(x^2+8x+15)
asymptotes\:f(x)=\frac{x^{2}-9}{x^{2}+8x+15}
extreme f(x)=2-x^{2/3}
extreme\:f(x)=2-x^{\frac{2}{3}}
inverse of f(x)=\sqrt[3]{x-6}+8
inverse\:f(x)=\sqrt[3]{x-6}+8
asymptotes of f(x)= 6/(x-4)
asymptotes\:f(x)=\frac{6}{x-4}
inverse of f(x)=(15)/(x+14)
inverse\:f(x)=\frac{15}{x+14}
simplify (7.2)(7.5)
simplify\:(7.2)(7.5)
domain of ((1/(sqrt(x))))/(x^2-4)
domain\:\frac{(\frac{1}{\sqrt{x}})}{x^{2}-4}
domain of f(x)=sqrt(4-4x^2)
domain\:f(x)=\sqrt{4-4x^{2}}
asymptotes of (x^2-x)/(x^2-6x+5)
asymptotes\:\frac{x^{2}-x}{x^{2}-6x+5}
asymptotes of f(x)=(6x^2+1)/(x^2+x+36)
asymptotes\:f(x)=\frac{6x^{2}+1}{x^{2}+x+36}
periodicity of 2sec(pi/5 x+pi)
periodicity\:2\sec(\frac{π}{5}x+π)
inverse of f(x)=log_{e}((x+4)/x)
inverse\:f(x)=\log_{e}(\frac{x+4}{x})
intercepts of f(x)=2x+1
intercepts\:f(x)=2x+1
extreme f(x)=12x^2-3x^4
extreme\:f(x)=12x^{2}-3x^{4}
midpoint (-10,6),(2,-4)
midpoint\:(-10,6),(2,-4)
domain of 1/(x-3)+4
domain\:\frac{1}{x-3}+4
extreme 2x^2-3
extreme\:2x^{2}-3
parity 1-x-x^2
parity\:1-x-x^{2}
line (8,0),(10,-1)
line\:(8,0),(10,-1)
periodicity of f(x)=4cos((8pix)/7)
periodicity\:f(x)=4\cos(\frac{8πx}{7})
slope ofintercept 3x+2y=14
slopeintercept\:3x+2y=14
domain of f(x)=(3-x^2)/(3x^2-5x-2)
domain\:f(x)=\frac{3-x^{2}}{3x^{2}-5x-2}
domain of f(x)= 1/(sqrt(x^2-2x-8))
domain\:f(x)=\frac{1}{\sqrt{x^{2}-2x-8}}
monotone f(x)=x^4-4x^3
monotone\:f(x)=x^{4}-4x^{3}
inflection f(x)=3x^4+8x^3
inflection\:f(x)=3x^{4}+8x^{3}
inverse of y=2x+1
inverse\:y=2x+1
asymptotes of f(x)=6tan(pix)
asymptotes\:f(x)=6\tan(πx)
domain of log_{10}(x)
domain\:\log_{10}(x)
intercepts of 1/(3x^2+3x-18)
intercepts\:\frac{1}{3x^{2}+3x-18}
domain of sqrt(x+9)
domain\:\sqrt{x+9}
f(x)= 1/(e^x)
f(x)=\frac{1}{e^{x}}
domain of f(x)= 2/x+x/(x+2)
domain\:f(x)=\frac{2}{x}+\frac{x}{x+2}
domain of f(x)=sqrt(x)^4+6(sqrt(x))^2-1
domain\:f(x)=\sqrt{x}^{4}+6(\sqrt{x})^{2}-1
line (0,3),(-1,0)
line\:(0,3),(-1,0)
inverse of f(x)=sqrt(x^3+5)
inverse\:f(x)=\sqrt{x^{3}+5}
vertices y=2x^2+24x-6
vertices\:y=2x^{2}+24x-6
intercepts of f(x)=sqrt(x+2)
intercepts\:f(x)=\sqrt{x+2}
inverse of f(x)=5-(x+1)/3
inverse\:f(x)=5-\frac{x+1}{3}
1
..
61
62
63
64
65
..
1324