Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of x^2-6x+8
range\:x^{2}-6x+8
midpoint (17,-17),(0,-19)
midpoint\:(17,-17),(0,-19)
inverse of f(x)=(x+2)^2-4
inverse\:f(x)=(x+2)^{2}-4
intercepts of f(x)=-16x^2+60x+2
intercepts\:f(x)=-16x^{2}+60x+2
domain of f(x)=x^5-3x+5
domain\:f(x)=x^{5}-3x+5
inverse of f(x)=6x(1-x)
inverse\:f(x)=6x(1-x)
slope ofintercept 2y-x=4
slopeintercept\:2y-x=4
inverse of f(x)=2x+34
inverse\:f(x)=2x+34
slope of y=2-8x
slope\:y=2-8x
vertices y=x^2+16x+71
vertices\:y=x^{2}+16x+71
perpendicular y=-5x+7
perpendicular\:y=-5x+7
range of f(x)=(3x-4)/(4x+9)
range\:f(x)=\frac{3x-4}{4x+9}
y=-1/2 x^2
y=-\frac{1}{2}x^{2}
range of f(x)=3+sqrt(x)
range\:f(x)=3+\sqrt{x}
domain of (x^2+5x)/(x^2+7x+10)
domain\:\frac{x^{2}+5x}{x^{2}+7x+10}
domain of f(x)=(x-5)^2-1
domain\:f(x)=(x-5)^{2}-1
asymptotes of f(x)=(x-3)/((x+4)^2)
asymptotes\:f(x)=\frac{x-3}{(x+4)^{2}}
critical f(x)= x/(x^2-25)
critical\:f(x)=\frac{x}{x^{2}-25}
inflection y=2x^3-x^2+3
inflection\:y=2x^{3}-x^{2}+3
slope of 2x+7y=14
slope\:2x+7y=14
inverse of f(x)=(9x-9)/(8x+1)
inverse\:f(x)=\frac{9x-9}{8x+1}
inverse of 6x-3
inverse\:6x-3
inverse of f(x)=3+sqrt(5+x)
inverse\:f(x)=3+\sqrt{5+x}
extreme f(x)=x^3-3x+1,-3<= x<= 3
extreme\:f(x)=x^{3}-3x+1,-3\le\:x\le\:3
inverse of 23
inverse\:23
slope of y=3x-3
slope\:y=3x-3
domain of-x+3
domain\:-x+3
parity f(x)=(-x^3)/(5x^2+7)
parity\:f(x)=\frac{-x^{3}}{5x^{2}+7}
domain of (x+2)/(x^2-4x+4)
domain\:\frac{x+2}{x^{2}-4x+4}
inverse of (2x+2)/(x-1)
inverse\:\frac{2x+2}{x-1}
slope ofintercept 2x+3y=15
slopeintercept\:2x+3y=15
critical x*e^{-2x}
critical\:x\cdot\:e^{-2x}
range of f(x)=sqrt(-x)
range\:f(x)=\sqrt{-x}
inverse of f(x)=7x+12
inverse\:f(x)=7x+12
domain of (x-9)/(x-2)
domain\:\frac{x-9}{x-2}
inverse of 4x^4-3
inverse\:4x^{4}-3
midpoint (3,2),(-11,-3)
midpoint\:(3,2),(-11,-3)
domain of f(x)= 2/(3x+12)
domain\:f(x)=\frac{2}{3x+12}
domain of f(x)=sqrt(5-2x)
domain\:f(x)=\sqrt{5-2x}
inverse of y=9-x^2
inverse\:y=9-x^{2}
range of sqrt(x^2+1)
range\:\sqrt{x^{2}+1}
symmetry 3(x+1)(x-2)
symmetry\:3(x+1)(x-2)
range of (4x-3)/(6-2x)
range\:\frac{4x-3}{6-2x}
inverse of f(x)=(x+3)^2-1
inverse\:f(x)=(x+3)^{2}-1
domain of y= 3/4-sqrt(2-x)
domain\:y=\frac{3}{4}-\sqrt{2-x}
extreme f(x)=2x^2+x+2,-1<= x<= 3
extreme\:f(x)=2x^{2}+x+2,-1\le\:x\le\:3
extreme f(x)=sin(x),0<= x<pi^2
extreme\:f(x)=\sin(x),0\le\:x<π^{2}
parity (-x^2-x+6)/(x^2+3x-4)
parity\:\frac{-x^{2}-x+6}{x^{2}+3x-4}
inverse of f(x)=2sqrt(x-1)+3
inverse\:f(x)=2\sqrt{x-1}+3
domain of 11x
domain\:11x
range of y=2e^x-1
range\:y=2e^{x}-1
line 10x-5y=25
line\:10x-5y=25
inverse of f(x)=(7-10x)^{9/2}
inverse\:f(x)=(7-10x)^{\frac{9}{2}}
domain of y=(3x-6)/(x-2)
domain\:y=\frac{3x-6}{x-2}
inverse of f(x)=-1/2 y-5
inverse\:f(x)=-\frac{1}{2}y-5
extreme x^4-4x^3
extreme\:x^{4}-4x^{3}
y=x
y=x
inverse of f(x)=4-ln(x+2)
inverse\:f(x)=4-\ln(x+2)
extreme f(x)=x^4e^x-2
extreme\:f(x)=x^{4}e^{x}-2
asymptotes of f(x)=x^4-8x^3
asymptotes\:f(x)=x^{4}-8x^{3}
domain of f(x)=(2x)/(sqrt(x-3))
domain\:f(x)=\frac{2x}{\sqrt{x-3}}
intercepts of f(x)=-x^2-9x-20
intercepts\:f(x)=-x^{2}-9x-20
asymptotes of y=log_{10}(x)
asymptotes\:y=\log_{10}(x)
domain of f(x)=ln(9-x^2)
domain\:f(x)=\ln(9-x^{2})
domain of f(x)=sqrt(x+4)
domain\:f(x)=\sqrt{x+4}
symmetry y=x^2+4x-2
symmetry\:y=x^{2}+4x-2
domain of arccos(1/(y^2))
domain\:\arccos(\frac{1}{y^{2}})
critical f(x)=4x^3+6x^2-72x-9
critical\:f(x)=4x^{3}+6x^{2}-72x-9
symmetry xy^2+10=0
symmetry\:xy^{2}+10=0
asymptotes of log_{4}(x)+2
asymptotes\:\log_{4}(x)+2
domain of f(x)=x^2+8x-1
domain\:f(x)=x^{2}+8x-1
domain of f(x)=sqrt(1-2^t)
domain\:f(x)=\sqrt{1-2^{t}}
critical f(x)=x^2e^x
critical\:f(x)=x^{2}e^{x}
domain of y=sqrt(3-x)
domain\:y=\sqrt{3-x}
midpoint (-3,4),(5,-2)
midpoint\:(-3,4),(5,-2)
asymptotes of f(x)=(x^2-64)/x
asymptotes\:f(x)=\frac{x^{2}-64}{x}
intercepts of f(x)=-2(x+2)^2+4
intercepts\:f(x)=-2(x+2)^{2}+4
inverse of f(x)=(2-x)^2
inverse\:f(x)=(2-x)^{2}
inverse of f(x)=(x^{1/5})/8
inverse\:f(x)=\frac{x^{\frac{1}{5}}}{8}
f(x)=10x^4-27x^3-19x^2+42x-36
f(x)=10x^{4}-27x^{3}-19x^{2}+42x-36
amplitude of 3tan(pi/2 x)+2
amplitude\:3\tan(\frac{π}{2}x)+2
domain of (sqrt(6-x))/(x^3-64)
domain\:\frac{\sqrt{6-x}}{x^{3}-64}
critical 3(x-1)^2
critical\:3(x-1)^{2}
domain of (4x)/(sqrt(x^2+15))
domain\:\frac{4x}{\sqrt{x^{2}+15}}
domain of sin(e^{-t})
domain\:\sin(e^{-t})
inverse of f(x)=3-9x
inverse\:f(x)=3-9x
midpoint (-3,-3),(2,5)
midpoint\:(-3,-3),(2,5)
slope of y=3x-1
slope\:y=3x-1
symmetry y=x^2+9
symmetry\:y=x^{2}+9
range of f(x)=2x-1
range\:f(x)=2x-1
range of log_{10}(5-2x)
range\:\log_{10}(5-2x)
domain of f(x)=(5-x)(x^2-4x)
domain\:f(x)=(5-x)(x^{2}-4x)
domain of y=(-4-2x^2)/(x^2-3)
domain\:y=\frac{-4-2x^{2}}{x^{2}-3}
inverse of 7/(x+6)
inverse\:\frac{7}{x+6}
line (3,3),(-1,1)
line\:(3,3),(-1,1)
domain of f(x)=sqrt(9-4x)
domain\:f(x)=\sqrt{9-4x}
periodicity of sin^5(x)
periodicity\:\sin^{5}(x)
inverse of (2x)/(3-x)
inverse\:\frac{2x}{3-x}
parity f(x)=6x^3+1
parity\:f(x)=6x^{3}+1
asymptotes of f(x)=(3x+4)/(2x^2-5x)
asymptotes\:f(x)=\frac{3x+4}{2x^{2}-5x}
1
..
98
99
100
101
102
..
1324