Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
intercepts of f(x)=(x+2)/(x-4)
intercepts\:f(x)=\frac{x+2}{x-4}
domain of f(x)= 1/(5+e^{3x)}
domain\:f(x)=\frac{1}{5+e^{3x}}
range of f(x)=(e^{-x})/(x^2+1)
range\:f(x)=\frac{e^{-x}}{x^{2}+1}
inverse of 4x^4-37x^2+9
inverse\:4x^{4}-37x^{2}+9
line y=4
line\:y=4
slope of y=x-4
slope\:y=x-4
asymptotes of f(x)=-3csc(x)
asymptotes\:f(x)=-3\csc(x)
domain of f(x)=sqrt(x-7)+8
domain\:f(x)=\sqrt{x-7}+8
slope ofintercept-7x-5y=-48
slopeintercept\:-7x-5y=-48
inverse of f(x)= 2/(x^3+1)
inverse\:f(x)=\frac{2}{x^{3}+1}
domain of f(x)=(x+2)/(x^2-4)
domain\:f(x)=\frac{x+2}{x^{2}-4}
range of-x^2+2x-6
range\:-x^{2}+2x-6
slope ofintercept y=-2/5 x+8
slopeintercept\:y=-\frac{2}{5}x+8
vertices y=x^2-6x+7
vertices\:y=x^{2}-6x+7
critical (x^3)/(x^2-1)
critical\:\frac{x^{3}}{x^{2}-1}
range of f(x)=|x-2|
range\:f(x)=\left|x-2\right|
intercepts of x^3-4x^2+8x-5
intercepts\:x^{3}-4x^{2}+8x-5
extreme 6x^4+8x^3
extreme\:6x^{4}+8x^{3}
inverse of 1/(sqrt(x))
inverse\:\frac{1}{\sqrt{x}}
domain of f(x)=e^{sqrt(x^3-6x^2+8x)}
domain\:f(x)=e^{\sqrt{x^{3}-6x^{2}+8x}}
midpoint (8,-4),(12,2)
midpoint\:(8,-4),(12,2)
asymptotes of f(x)=3xy-2x-4y-3=0
asymptotes\:f(x)=3xy-2x-4y-3=0
range of cos^2(x)+2
range\:\cos^{2}(x)+2
slope of-17/13
slope\:-\frac{17}{13}
intercepts of 2x^2+4x-1
intercepts\:2x^{2}+4x-1
domain of f(x)= 5/((x+2)(x-1))
domain\:f(x)=\frac{5}{(x+2)(x-1)}
asymptotes of y=3^{x+2}-1
asymptotes\:y=3^{x+2}-1
inverse of f(x)=100(1-x/(40))^2
inverse\:f(x)=100(1-\frac{x}{40})^{2}
inverse of f(x)= 5/(x+3)
inverse\:f(x)=\frac{5}{x+3}
parity f(x)=(33x)/(4x^5-3x-4)
parity\:f(x)=\frac{33x}{4x^{5}-3x-4}
distance (-10,7),(2,5)
distance\:(-10,7),(2,5)
asymptotes of f(x)= 3/(x-2)+9
asymptotes\:f(x)=\frac{3}{x-2}+9
shift 5cos(2x+pi/2)
shift\:5\cos(2x+\frac{π}{2})
domain of f(x)=(x-2)^2
domain\:f(x)=(x-2)^{2}
inverse of f(x)=(3x+4)/(x-1)
inverse\:f(x)=\frac{3x+4}{x-1}
extreme f(x)=x+1/x
extreme\:f(x)=x+\frac{1}{x}
domain of f(x)= 4/(x-6)
domain\:f(x)=\frac{4}{x-6}
domain of f(x)=sqrt(2-\sqrt{54-3x-x^2)}
domain\:f(x)=\sqrt{2-\sqrt{54-3x-x^{2}}}
simplify (-1.6)(0.7)
simplify\:(-1.6)(0.7)
simplify (1.4)(-2.4)
simplify\:(1.4)(-2.4)
domain of f(x)=sqrt(4x+8)
domain\:f(x)=\sqrt{4x+8}
inverse of f(x)=(x+1)^3-2
inverse\:f(x)=(x+1)^{3}-2
inverse of f(x)=7x-3
inverse\:f(x)=7x-3
perpendicular 2x-6y=-84
perpendicular\:2x-6y=-84
range of f(x)=(1/4)^x
range\:f(x)=(\frac{1}{4})^{x}
domain of f(x)=(-5x+2)/(x^2+10)
domain\:f(x)=\frac{-5x+2}{x^{2}+10}
domain of f(x)=(16)/(x^2)
domain\:f(x)=\frac{16}{x^{2}}
domain of x^2+16x+64
domain\:x^{2}+16x+64
inverse of 6-8x^3
inverse\:6-8x^{3}
line (-2,-4),(2,5)
line\:(-2,-4),(2,5)
inverse of f(x)=2ln(x-1)
inverse\:f(x)=2\ln(x-1)
asymptotes of f(x)=(10)/(x+7)
asymptotes\:f(x)=\frac{10}{x+7}
intercepts of (e^x)/x
intercepts\:\frac{e^{x}}{x}
domain of f(x)=x^2-6x
domain\:f(x)=x^{2}-6x
inverse of (-3)/(x+4)
inverse\:\frac{-3}{x+4}
domain of f(x)=12x-10
domain\:f(x)=12x-10
domain of (sqrt(t-2))/(4t-24)
domain\:\frac{\sqrt{t-2}}{4t-24}
domain of sqrt((7/x)+5)
domain\:\sqrt{(\frac{7}{x})+5}
inverse of f(x)= 5/4 x+15
inverse\:f(x)=\frac{5}{4}x+15
domain of x/(x-1)
domain\:\frac{x}{x-1}
domain of f(x)=(sqrt(5-x))/(sqrt(x^2-9))
domain\:f(x)=\frac{\sqrt{5-x}}{\sqrt{x^{2}-9}}
midpoint (5,-6),(-1,2)
midpoint\:(5,-6),(-1,2)
inverse of f(x)=5+4/x
inverse\:f(x)=5+\frac{4}{x}
slope ofintercept x-3y=12
slopeintercept\:x-3y=12
inverse of f(x)=(\sqrt[5]{x})/5
inverse\:f(x)=\frac{\sqrt[5]{x}}{5}
domain of f(x)=(x+8)/(x^2-1)
domain\:f(x)=\frac{x+8}{x^{2}-1}
parity y=sqrt(2x^2-1)
parity\:y=\sqrt{2x^{2}-1}
inverse of (4x^2+1)/(2x)
inverse\:\frac{4x^{2}+1}{2x}
domain of (x-8)/(2x^2)
domain\:\frac{x-8}{2x^{2}}
asymptotes of f(x)=2+(x^2)/(x^4+1)
asymptotes\:f(x)=2+\frac{x^{2}}{x^{4}+1}
inflection 2x^3+6x^2+3
inflection\:2x^{3}+6x^{2}+3
inverse of f(x)=2-9x^3
inverse\:f(x)=2-9x^{3}
range of (2x)/(2x-4)
range\:\frac{2x}{2x-4}
extreme f(x)=5x^2+6x-6
extreme\:f(x)=5x^{2}+6x-6
parallel 2x+y=3,(4,1)
parallel\:2x+y=3,(4,1)
domain of f(x)=5-x^2
domain\:f(x)=5-x^{2}
range of f(x)=(x^2-2x-3)/x
range\:f(x)=\frac{x^{2}-2x-3}{x}
asymptotes of f(x)=(x^2-2x-8)/x
asymptotes\:f(x)=\frac{x^{2}-2x-8}{x}
midpoint (-5,2),(1,-3)
midpoint\:(-5,2),(1,-3)
range of f(x)= 1/2
range\:f(x)=\frac{1}{2}
range of f(x)=x(x+11)(x-6)
range\:f(x)=x(x+11)(x-6)
domain of f(x)=sqrt(-x+2)
domain\:f(x)=\sqrt{-x+2}
inflection sqrt(|x^2-3x+2|)
inflection\:\sqrt{\left|x^{2}-3x+2\right|}
asymptotes of (x^2-64)/(x+4)
asymptotes\:\frac{x^{2}-64}{x+4}
intercepts of f(x)=log_{256}(x-x^2)
intercepts\:f(x)=\log_{256}(x-x^{2})
inverse of f(x)=5-5x
inverse\:f(x)=5-5x
f(x)=x^3-3x^2+1
f(x)=x^{3}-3x^{2}+1
inverse of ((\sqrt[5]{x})/7+5)^3
inverse\:(\frac{\sqrt[5]{x}}{7}+5)^{3}
inverse of ln(x+5)
inverse\:\ln(x+5)
critical f(x)=x^2(x-3)
critical\:f(x)=x^{2}(x-3)
domain of f(x)=((x^2-1))/((x+1))
domain\:f(x)=\frac{(x^{2}-1)}{(x+1)}
extreme f(x)=-x^3-3x^2+9x+1
extreme\:f(x)=-x^{3}-3x^{2}+9x+1
inverse of y=-x^2-3
inverse\:y=-x^{2}-3
asymptotes of (3x^2)/(2x+2)
asymptotes\:\frac{3x^{2}}{2x+2}
domain of f(x)= 1/(sqrt(2-x))
domain\:f(x)=\frac{1}{\sqrt{2-x}}
critical f(x)=2xe^{5x}
critical\:f(x)=2xe^{5x}
intercepts of f(x)=(5x^2)/(x^2-4)
intercepts\:f(x)=\frac{5x^{2}}{x^{2}-4}
inverse of f(x)=5x+2
inverse\:f(x)=5x+2
critical \sqrt[3]{(x-1)^2}
critical\:\sqrt[3]{(x-1)^{2}}
periodicity of f(x)= 1/2 cos(4x)
periodicity\:f(x)=\frac{1}{2}\cos(4x)
1
..
100
101
102
103
104
..
1324