Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (ln(x)/(5ln(x)+4))
\frac{d}{dx}(\frac{\ln(x)}{5\ln(x)+4})
integral from 1 to 4 of sqrt(t)ln(t)
\int\:_{1}^{4}\sqrt{t}\ln(t)dt
slope of y=x+3y=x+1y=-x+1
slope\:y=x+3y=x+1y=-x+1
derivative of (3x+2/(x-1))
\frac{d}{dx}(\frac{3x+2}{x-1})
derivative of (e^x/(x+1))
\frac{d}{dx}(\frac{e^{x}}{x+1})
integral of (e^{x/2})/2
\int\:\frac{e^{\frac{x}{2}}}{2}dx
sum from n=0 to infinity of (-5/8)^n
\sum\:_{n=0}^{\infty\:}(-\frac{5}{8})^{n}
derivative of log_{e}(1/(csc(x)))
derivative\:\log_{e}(\frac{1}{\csc(x)})
taylor (1+x)^{1/x}
taylor\:(1+x)^{\frac{1}{x}}
y^{'''}+10y^{''}+25y^'=0
y^{\prime\:\prime\:\prime\:}+10y^{\prime\:\prime\:}+25y^{\prime\:}=0
(\partial)/(\partial x)(-2xy+x^3)
\frac{\partial\:}{\partial\:x}(-2xy+x^{3})
tangent of f(x)=2-3x^2,\at x=-2
tangent\:f(x)=2-3x^{2},\at\:x=-2
(dy)/(dx)=y^2-2y
\frac{dy}{dx}=y^{2}-2y
derivative of e^{2x}*sin(x^2+5)
\frac{d}{dx}(e^{2x}\cdot\:\sin(x^{2}+5))
tangent of 2x^3-x^2+3
tangent\:2x^{3}-x^{2}+3
d/(dy)(ln(sqrt(x^2+y^2)))
\frac{d}{dy}(\ln(\sqrt{x^{2}+y^{2}}))
(dy)/(dx)=(x+y+9)^2
\frac{dy}{dx}=(x+y+9)^{2}
integral from-2 to 3 of (25)/(x^4)
\int\:_{-2}^{3}\frac{25}{x^{4}}dx
derivative of 1/(2\sqrt[3]{x^2})
\frac{d}{dx}(\frac{1}{2\sqrt[3]{x^{2}}})
integral from 0 to infinity of sin(4x)
\int\:_{0}^{\infty\:}\sin(4x)dx
integral of (-9)/(sqrt(x^2+16))
\int\:\frac{-9}{\sqrt{x^{2}+16}}dx
(d^2)/(dx^2)((3x^2+6x)sin(x))
\frac{d^{2}}{dx^{2}}((3x^{2}+6x)\sin(x))
derivative of cos(2x-1tan(1-2x))
\frac{d}{dx}(\cos(2x-1)\tan(1-2x))
area e^x,xe^{x^2},[0,1]
area\:e^{x},xe^{x^{2}},[0,1]
derivative of f(x)= 1/((3-x)^2)
derivative\:f(x)=\frac{1}{(3-x)^{2}}
limit as x approaches 0-of \sqrt[3]{x}
\lim\:_{x\to\:0-}(\sqrt[3]{x})
derivative of 4t^{(-3)/8}
derivative\:4t^{\frac{-3}{8}}
derivative of pi/6
\frac{d}{dx}(\frac{π}{6})
y^{''}+2y^'-8y=6e-2x-e-x
y^{\prime\:\prime\:}+2y^{\prime\:}-8y=6e-2x-e-x
derivative of (ax/(b+c))
\frac{d}{dx}(\frac{ax}{b+c})
integral of (sin^4(cot(x)))/(sin^2(x))
\int\:\frac{\sin^{4}(\cot(x))}{\sin^{2}(x)}dx
(\partial)/(\partial y)(tan(x^3y^2))
\frac{\partial\:}{\partial\:y}(\tan(x^{3}y^{2}))
(\partial)/(\partial x)(cos(x^2-y))
\frac{\partial\:}{\partial\:x}(\cos(x^{2}-y))
integral of (2x)/(sqrt(x-1))
\int\:\frac{2x}{\sqrt{x-1}}dx
(\partial)/(\partial y)(3y)
\frac{\partial\:}{\partial\:y}(3y)
4y^{''}-4y^'+4y=0
4y^{\prime\:\prime\:}-4y^{\prime\:}+4y=0
(\partial)/(\partial x)(xy+xcos(x))
\frac{\partial\:}{\partial\:x}(xy+x\cos(x))
x^{''}+9x-27=0,x(0)=4,x^'(0)=6
x^{\prime\:\prime\:}+9x-27=0,x(0)=4,x^{\prime\:}(0)=6
integral of 1/(12y)
\int\:\frac{1}{12y}dy
(\partial)/(\partial y)((y-t)/(5y+2t))
\frac{\partial\:}{\partial\:y}(\frac{y-t}{5y+2t})
laplacetransform t-pi
laplacetransform\:t-π
integral of (x^2)/((x^2+1)^2)
\int\:\frac{x^{2}}{(x^{2}+1)^{2}}dx
derivative of ln(sqrt(x^2-4))
\frac{d}{dx}(\ln(\sqrt{x^{2}-4}))
d/(dt)(e^{5tsin(2t)})
\frac{d}{dt}(e^{5t\sin(2t)})
derivative of e^{ln(x})
\frac{d}{dx}(e^{\ln(x)})
derivative of sqrt((x^2-1)/(x^2+1))
derivative\:\sqrt{\frac{x^{2}-1}{x^{2}+1}}
sum from n=2 to infinity of ln(1/n)
\sum\:_{n=2}^{\infty\:}\ln(\frac{1}{n})
inverse oflaplace 1/(2x^2+x+1)
inverselaplace\:\frac{1}{2x^{2}+x+1}
(dN)/(dt)=5-N,N(2)=2
\frac{dN}{dt}=5-N,N(2)=2
integral of ((e^x-e^{-x})/2)
\int\:(\frac{e^{x}-e^{-x}}{2})dx
integral of (1/(e^x+e^{2x)})/(-e^{-3x)}
\int\:\frac{\frac{1}{e^{x}+e^{2x}}}{-e^{-3x}}dx
limit as x approaches 2-of (x-1)/(|x-1|)
\lim\:_{x\to\:2-}(\frac{x-1}{\left|x-1\right|})
derivative of 3x^3y^2
\frac{d}{dx}(3x^{3}y^{2})
(dy)/(dx)=(2x+sec^2(x))/(4y)
\frac{dy}{dx}=\frac{2x+\sec^{2}(x)}{4y}
(\partial)/(\partial y)(yln(x))
\frac{\partial\:}{\partial\:y}(y\ln(x))
derivative of 40x^4+180x^3+240x^2+100x
\frac{d}{dx}(40x^{4}+180x^{3}+240x^{2}+100x)
derivative of 1/3 (3-5x^3)
\frac{d}{dx}(\frac{1}{3}(3-5x)^{3})
integral from 0 to 2 of (16)/(21x^2)
\int\:_{0}^{2}\frac{16}{21x^{2}}dx
tangent of 9x^2,\at x=2
tangent\:9x^{2},\at\:x=2
integral of x/(x^2-x+6)
\int\:\frac{x}{x^{2}-x+6}dx
(\partial)/(\partial x)(a/(x^2))
\frac{\partial\:}{\partial\:x}(\frac{a}{x^{2}})
(\partial)/(\partial x)(ln(x^6y))
\frac{\partial\:}{\partial\:x}(\ln(x^{6}y))
(dy)/(dx)+y/x =8x^5y^2
\frac{dy}{dx}+\frac{y}{x}=8x^{5}y^{2}
integral from 0 to 6 of (8t)/((t-7)^2)
\int\:_{0}^{6}\frac{8t}{(t-7)^{2}}dt
(\partial)/(\partial x)((z(x+y))/(x+y+z))
\frac{\partial\:}{\partial\:x}(\frac{z(x+y)}{x+y+z})
x^'=-2x
x^{\prime\:}=-2x
limit as x approaches-10 of-(1/(x+10))
\lim\:_{x\to\:-10}(-(\frac{1}{x+10}))
integral from 0 to x of sqrt(x^2+x^4)
\int\:_{0}^{x}\sqrt{x^{2}+x^{4}}dx
derivative of ax^2e^{3x}
\frac{d}{dx}(ax^{2}e^{3x})
integral of 2cos(x)cos(2x)
\int\:2\cos(x)\cos(2x)dx
derivative of arctan(0)
\frac{d}{dx}(\arctan(0))
(\partial)/(\partial y)(x/(x+y))
\frac{\partial\:}{\partial\:y}(\frac{x}{x+y})
(\partial)/(\partial y)(-1/4 (y^2+x^2))
\frac{\partial\:}{\partial\:y}(-\frac{1}{4}(y^{2}+x^{2}))
limit as x approaches-5 of (x+3)/(x+5)
\lim\:_{x\to\:-5}(\frac{x+3}{x+5})
integral of 3cos^2(t)
\int\:3\cos^{2}(t)dt
(d^2y)/(dx^2)+9y=0
\frac{d^{2}y}{dx^{2}}+9y=0
derivative of 6x^3-tan(x)
derivative\:6x^{3}-\tan(x)
(\partial)/(\partial x)(xy(1-7x-4y))
\frac{\partial\:}{\partial\:x}(xy(1-7x-4y))
area 8cos(2x),8-8cos(2x),0, pi/2
area\:8\cos(2x),8-8\cos(2x),0,\frac{π}{2}
limit as x approaches 0+of x-1/(x^3)
\lim\:_{x\to\:0+}(x-\frac{1}{x^{3}})
(\partial)/(\partial x)(ln(1+x^2+e^y+z))
\frac{\partial\:}{\partial\:x}(\ln(1+x^{2}+e^{y}+z))
tangent of y=sec(x),(pi/6 ,(2sqrt(3))/3)
tangent\:y=\sec(x),(\frac{π}{6},\frac{2\sqrt{3}}{3})
2xy^'-8y=x^{-4}
2xy^{\prime\:}-8y=x^{-4}
derivative of-1/(2sqrt(1-x))
derivative\:-\frac{1}{2\sqrt{1-x}}
integral of sqrt(1+t^4)
\int\:\sqrt{1+t^{4}}dt
limit as t approaches 0 of e^{-6t}
\lim\:_{t\to\:0}(e^{-6t})
integral of (x^2-16)/(x(x+2)^3)
\int\:\frac{x^{2}-16}{x(x+2)^{3}}dx
(\partial)/(\partial x)(-sqrt(x^2+y^2))
\frac{\partial\:}{\partial\:x}(-\sqrt{x^{2}+y^{2}})
t^2y^{''}-2y=3t^2-1
t^{2}y^{\prime\:\prime\:}-2y=3t^{2}-1
limit as x approaches 0 of ((1))/x
\lim\:_{x\to\:0}(\frac{(1)}{x})
y^'=(1-y)(2-y)
y^{\prime\:}=(1-y)(2-y)
(ln(e))^'
(\ln(e))^{\prime\:}
derivative of e^{-(x-1^2})
\frac{d}{dx}(e^{-(x-1)^{2}})
(dy)/(dx)=(4cos^2(y)tan(x))
\frac{dy}{dx}=(4\cos^{2}(y)\tan(x))
derivative of (1/(y^2)-9/(y^4))(y+7y^3)
derivative\:(\frac{1}{y^{2}}-\frac{9}{y^{4}})(y+7y^{3})
integral of-8sin(x)
\int\:-8\sin(x)dx
integral of (x^2-x+8)/(x^3+2x)
\int\:\frac{x^{2}-x+8}{x^{3}+2x}dx
integral of (x+1)(sqrt(3x+2))
\int\:(x+1)(\sqrt{3x+2})dx
tangent of f(x)=x^3-12x
tangent\:f(x)=x^{3}-12x
integral of (3/5)cos(x)
\int\:(\frac{3}{5})\cos(x)dx
1
..
69
70
71
72
73
..
2459