Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sqrt(3)*sin(4x+60^0)-3=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

23​⋅sin(4x+600)−3=0

Solution

x=−41​+12π​+2πn​,x=−41​+6π​+2πn​
+1
Degrees
x=0.67605…∘+90∘n,x=15.67605…∘+90∘n
Solution steps
23​sin(4x+600)−3=0
Move 3to the right side
23​sin(4x+600)−3=0
Add 3 to both sides23​sin(4x+600)−3+3=0+3
Simplify23​sin(4x+600)=3
23​sin(4x+600)=3
Divide both sides by 23​
23​sin(4x+600)=3
Divide both sides by 23​23​23​sin(4x+600)​=23​3​
Simplify
23​23​sin(4x+600)​=23​3​
Simplify 23​23​sin(4x+600)​:sin(4x+600)
23​23​sin(4x+600)​
Divide the numbers: 22​=1=3​3​sin(4x+600)​
Cancel the common factor: 3​=sin(4x+600)
Simplify 23​3​:23​​
23​3​
Apply radical rule: 3​=321​=2⋅321​3​
Apply exponent rule: xbxa​=xa−b321​31​=31−21​=231−21​​
Subtract the numbers: 1−21​=21​=2321​​
Apply radical rule: 321​=3​=23​​
sin(4x+600)=23​​
sin(4x+600)=23​​
sin(4x+600)=23​​
General solutions for sin(4x+600)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
4x+600=3π​+2πn,4x+600=32π​+2πn
4x+600=3π​+2πn,4x+600=32π​+2πn
Solve 4x+600=3π​+2πn:x=−41​+12π​+2πn​
4x+600=3π​+2πn
Apply rule a0=1,a=0600=14x+1=3π​+2πn
Move 1to the right side
4x+1=3π​+2πn
Subtract 1 from both sides4x+1−1=3π​+2πn−1
Simplify4x=3π​+2πn−1
4x=3π​+2πn−1
Divide both sides by 4
4x=3π​+2πn−1
Divide both sides by 444x​=43π​​+42πn​−41​
Simplify
44x​=43π​​+42πn​−41​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 43π​​+42πn​−41​:−41​+12π​+2πn​
43π​​+42πn​−41​
Group like terms=−41​+42πn​+43π​​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
43π​​=12π​
43π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅4π​
Multiply the numbers: 3⋅4=12=12π​
=−41​+2πn​+12π​
Group like terms=−41​+12π​+2πn​
x=−41​+12π​+2πn​
x=−41​+12π​+2πn​
x=−41​+12π​+2πn​
Solve 4x+600=32π​+2πn:x=−41​+6π​+2πn​
4x+600=32π​+2πn
Apply rule a0=1,a=0600=14x+1=32π​+2πn
Move 1to the right side
4x+1=32π​+2πn
Subtract 1 from both sides4x+1−1=32π​+2πn−1
Simplify4x=32π​+2πn−1
4x=32π​+2πn−1
Divide both sides by 4
4x=32π​+2πn−1
Divide both sides by 444x​=432π​​+42πn​−41​
Simplify
44x​=432π​​+42πn​−41​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 432π​​+42πn​−41​:−41​+6π​+2πn​
432π​​+42πn​−41​
Group like terms=−41​+42πn​+432π​​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
432π​​=6π​
432π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅42π​
Multiply the numbers: 3⋅4=12=122π​
Cancel the common factor: 2=6π​
=−41​+2πn​+6π​
Group like terms=−41​+6π​+2πn​
x=−41​+6π​+2πn​
x=−41​+6π​+2πn​
x=−41​+6π​+2πn​
x=−41​+12π​+2πn​,x=−41​+6π​+2πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(x)+sin^2(x))/2 =0.5cos(b)= 3/5arctan(1-x)+arctan(1+x)=arctan(1/8)5sin(4x)=22cos^2(x)-sqrt(3)*sin^2(x)-2=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sqrt(3)*sin(4x+60^0)-3=0 ?

    The general solution for 2sqrt(3)*sin(4x+60^0)-3=0 is x=-1/4+pi/(12)+(pin)/2 ,x=-1/4+pi/6+(pin)/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024