Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^3(x)=66

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos3(x)=66

Solution

NoSolutionforx∈R
Solution steps
cos3(x)=66
Solve by substitution
cos3(x)=66
Let: cos(x)=uu3=66
u3=66:u=366​,u=−3433​​+i2365​322​​,u=−3433​​−i2365​322​​
u3=66
For x3=f(a) the solutions are x=3f(a)​,3f(a)​2−1−3​i​,3f(a)​2−1+3​i​
u=366​,u=366​2−1+3​i​,u=366​2−1−3​i​
Simplify 366​2−1+3​i​:−3433​​+i2365​322​​
366​2−1+3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1+3​i)366​​
Factor 366​:32​33​311​
Factor 66=2⋅3⋅11=32⋅3⋅11​
Apply radical rule: nab​=na​nb​=32​33​311​
=232​33​311​(−1+3​i)​
Cancel 2(−1+3​i)32​33​311​​:232​33​311​(−1+3​i)​
2(−1+3​i)32​33​311​​
Apply radical rule: na​=an1​32​=231​=2231​33​311​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​33​311​(−1+3​i)​
Subtract the numbers: 1−31​=32​=232​33​311​(−1+3​i)​
=232​33​311​(−1+3​i)​
Simplify 33​311​(−1+3​i):333​(−1+3​i)
33​311​(−1+3​i)
Apply radical rule: na​nb​=na⋅b​33​311​=33⋅11​=(−1+3​i)33⋅11​
Multiply the numbers: 3⋅11=33=333​(−1+3​i)
=232​333​(−1+3​i)​
Expand 333​(−1+3​i):−333​+311​⋅365​i
333​(−1+3​i)
Apply the distributive law: a(b+c)=ab+aca=333​,b=−1,c=3​i=333​(−1)+333​3​i
Apply minus-plus rules+(−a)=−a=−1⋅333​+333​3​i
Simplify −1⋅333​+333​3​i:−333​+311​⋅365​i
−1⋅333​+333​3​i
1⋅333​=333​
1⋅333​
Multiply: 1⋅333​=333​=333​
333​3​i=311​⋅365​i
333​3​i
Factor integer 33=3⋅11=33⋅11​3​i
Apply radical rule: nab​=na​nb​33⋅11​=33​311​=33​311​3​i
Apply exponent rule: ab⋅ac=ab+c33​3​=331​⋅321​=331​+21​=311​⋅331​+21​i
331​+21​=365​
331​+21​
Join 31​+21​:65​
31​+21​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 31​:multiply the denominator and numerator by 231​=3⋅21⋅2​=62​
For 21​:multiply the denominator and numerator by 321​=2⋅31⋅3​=63​
=62​+63​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=62+3​
Add the numbers: 2+3=5=65​
=365​
=311​⋅365​i
=−333​+311​⋅365​i
=−333​+311​⋅365​i
=232​−333​+311​⋅365​i​
Rationalize 232​−333​+311​⋅365​i​:232​(−333​+311​⋅365​i)​
232​−333​+311​⋅365​i​
Multiply by the conjugate 32​32​​=232​32​(−333​+311​⋅365​i)32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=232​(−333​+311​⋅365​i)​
=232​(−333​+311​⋅365​i)​
Rewrite 232​(−333​+311​⋅365​i)​ in standard complex form: −3433​​+2322​⋅365​​i
232​(−333​+311​⋅365​i)​
Apply radical rule: na​=an1​32​=231​=2231​(−333​+311​⋅365​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​−333​+311​⋅365​i​
Subtract the numbers: 1−31​=32​=232​−333​+311​⋅365​i​
Apply the fraction rule: ca±b​=ca​±cb​232​−333​+311​⋅365​i​=−232​333​​+232​311​⋅365​i​=−232​333​​+232​311​⋅365​i​
232​333​​=3433​​
232​333​​
333​=3331​=232​3331​​
Combine same powers : ymb​xma​​=mybxa​​=32233​​
22=4=3433​​
=−3433​​+232​311​⋅365​i​
232​311​⋅365​​=2322​⋅365​​
232​311​⋅365​​
Multiply by the conjugate 32​32​​=232​32​311​⋅365​32​​
311​⋅365​32​=322​⋅365​
311​⋅365​32​
Apply radical rule: na​nb​=na⋅b​311​32​=311⋅2​=365​311⋅2​
Multiply the numbers: 11⋅2=22=322​⋅365​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=2322​⋅365​​
=−3433​​+2322​⋅365​​i
=−3433​​+2322​⋅365​​i
Simplify 366​2−1−3​i​:−3433​​−i2365​322​​
366​2−1−3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1−3​i)366​​
Factor 366​:32​33​311​
Factor 66=2⋅3⋅11=32⋅3⋅11​
Apply radical rule: nab​=na​nb​=32​33​311​
=232​33​311​(−1−3​i)​
Cancel 2(−1−3​i)32​33​311​​:232​33​311​(−1−3​i)​
2(−1−3​i)32​33​311​​
Apply radical rule: na​=an1​32​=231​=2231​33​311​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​33​311​(−1−3​i)​
Subtract the numbers: 1−31​=32​=232​33​311​(−1−3​i)​
=232​33​311​(−1−3​i)​
Simplify 33​311​(−1−3​i):333​(−1−3​i)
33​311​(−1−3​i)
Apply radical rule: na​nb​=na⋅b​33​311​=33⋅11​=(−1−3​i)33⋅11​
Multiply the numbers: 3⋅11=33=333​(−1−3​i)
=232​333​(−1−3​i)​
Expand 333​(−1−3​i):−333​−311​⋅365​i
333​(−1−3​i)
Apply the distributive law: a(b−c)=ab−aca=333​,b=−1,c=3​i=333​(−1)−333​3​i
Apply minus-plus rules+(−a)=−a=−1⋅333​−333​3​i
Simplify −1⋅333​−333​3​i:−333​−311​⋅365​i
−1⋅333​−333​3​i
1⋅333​=333​
1⋅333​
Multiply: 1⋅333​=333​=333​
333​3​i=311​⋅365​i
333​3​i
Factor integer 33=3⋅11=33⋅11​3​i
Apply radical rule: nab​=na​nb​33⋅11​=33​311​=33​311​3​i
Apply exponent rule: ab⋅ac=ab+c33​3​=331​⋅321​=331​+21​=311​⋅331​+21​i
331​+21​=365​
331​+21​
Join 31​+21​:65​
31​+21​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 31​:multiply the denominator and numerator by 231​=3⋅21⋅2​=62​
For 21​:multiply the denominator and numerator by 321​=2⋅31⋅3​=63​
=62​+63​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=62+3​
Add the numbers: 2+3=5=65​
=365​
=311​⋅365​i
=−333​−311​⋅365​i
=−333​−311​⋅365​i
=232​−333​−311​⋅365​i​
Rationalize 232​−333​−311​⋅365​i​:232​(−333​−311​⋅365​i)​
232​−333​−311​⋅365​i​
Multiply by the conjugate 32​32​​=232​32​(−333​−311​⋅365​i)32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=232​(−333​−311​⋅365​i)​
=232​(−333​−311​⋅365​i)​
Rewrite 232​(−333​−311​⋅365​i)​ in standard complex form: −3433​​−2322​⋅365​​i
232​(−333​−311​⋅365​i)​
Apply radical rule: na​=an1​32​=231​=2231​(−333​−311​⋅365​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​−333​−311​⋅365​i​
Subtract the numbers: 1−31​=32​=232​−333​−311​⋅365​i​
Apply the fraction rule: ca±b​=ca​±cb​232​−333​−311​⋅365​i​=−232​333​​−232​311​⋅365​i​=−232​333​​−232​311​⋅365​i​
232​333​​=3433​​
232​333​​
333​=3331​=232​3331​​
Combine same powers : ymb​xma​​=mybxa​​=32233​​
22=4=3433​​
=−3433​​−232​311​⋅365​i​
−232​311​⋅365​​=−2322​⋅365​​
−232​311​⋅365​​
Multiply by the conjugate 32​32​​=−232​32​311​⋅365​32​​
311​⋅365​32​=322​⋅365​
311​⋅365​32​
Apply radical rule: na​nb​=na⋅b​311​32​=311⋅2​=365​311⋅2​
Multiply the numbers: 11⋅2=22=322​⋅365​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=−2322​⋅365​​
=−3433​​−2322​⋅365​​i
=−3433​​−2322​⋅365​​i
u=366​,u=−3433​​+i2365​322​​,u=−3433​​−i2365​322​​
Substitute back u=cos(x)cos(x)=366​,cos(x)=−3433​​+i2365​322​​,cos(x)=−3433​​−i2365​322​​
cos(x)=366​,cos(x)=−3433​​+i2365​322​​,cos(x)=−3433​​−i2365​322​​
cos(x)=366​:No Solution
cos(x)=366​
−1≤cos(x)≤1NoSolution
cos(x)=−3433​​+i2365​322​​:No Solution
cos(x)=−3433​​+i2365​322​​
NoSolution
cos(x)=−3433​​−i2365​322​​:No Solution
cos(x)=−3433​​−i2365​322​​
NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sqrt(3)*sin(4x+60^0)-3=023​⋅sin(4x+600)−3=0(sin(x)+sin^2(x))/2 =0.52sin(x)+sin2(x)​=0.5cos(b)= 3/5cos(b)=53​arctan(1-x)+arctan(1+x)=arctan(1/8)arctan(1−x)+arctan(1+x)=arctan(81​)5sin(4x)=25sin(4x)=2

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^3(x)=66 ?

    The general solution for cos^3(x)=66 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024