Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,2sin((pi(x-2))/6)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=12n+3,x=12n+7
+1
Degrees
x=171.88733…∘+687.54935…∘n,x=401.07045…∘+687.54935…∘n
Solution steps
2sin(6π(x−2)​)=1
Divide both sides by 2
2sin(6π(x−2)​)=1
Divide both sides by 222sin(6π(x−2)​)​=21​
Simplifysin(6π(x−2)​)=21​
sin(6π(x−2)​)=21​
General solutions for sin(6π(x−2)​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
6π(x−2)​=6π​+2πn,6π(x−2)​=65π​+2πn
6π(x−2)​=6π​+2πn,6π(x−2)​=65π​+2πn
Solve 6π(x−2)​=6π​+2πn:x=12n+3
6π(x−2)​=6π​+2πn
Multiply both sides by 6
6π(x−2)​=6π​+2πn
Multiply both sides by 666π(x−2)​=6⋅6π​+6⋅2πn
Simplify
66π(x−2)​=6⋅6π​+6⋅2πn
Simplify 66π(x−2)​:π(x−2)
66π(x−2)​
Divide the numbers: 66​=1=π(x−2)
Simplify 6⋅6π​+6⋅2πn:π+12πn
6⋅6π​+6⋅2πn
6⋅6π​=π
6⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π6​
Cancel the common factor: 6=π
6⋅2πn=12πn
6⋅2πn
Multiply the numbers: 6⋅2=12=12πn
=π+12πn
π(x−2)=π+12πn
π(x−2)=π+12πn
π(x−2)=π+12πn
Divide both sides by π
π(x−2)=π+12πn
Divide both sides by πππ(x−2)​=ππ​+π12πn​
Simplify
ππ(x−2)​=ππ​+π12πn​
Simplify ππ(x−2)​:x−2
ππ(x−2)​
Cancel the common factor: π=x−2
Simplify ππ​+π12πn​:1+12n
ππ​+π12πn​
Apply rule aa​=1ππ​=1=1+π12πn​
Cancel π12πn​:12n
π12πn​
Cancel the common factor: π=12n
=1+12n
x−2=1+12n
x−2=1+12n
x−2=1+12n
Move 2to the right side
x−2=1+12n
Add 2 to both sidesx−2+2=1+12n+2
Simplifyx=12n+3
x=12n+3
Solve 6π(x−2)​=65π​+2πn:x=12n+7
6π(x−2)​=65π​+2πn
Multiply both sides by 6
6π(x−2)​=65π​+2πn
Multiply both sides by 666π(x−2)​=6⋅65π​+6⋅2πn
Simplify
66π(x−2)​=6⋅65π​+6⋅2πn
Simplify 66π(x−2)​:π(x−2)
66π(x−2)​
Divide the numbers: 66​=1=π(x−2)
Simplify 6⋅65π​+6⋅2πn:5π+12πn
6⋅65π​+6⋅2πn
6⋅65π​=5π
6⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π6​
Cancel the common factor: 6=5π
6⋅2πn=12πn
6⋅2πn
Multiply the numbers: 6⋅2=12=12πn
=5π+12πn
π(x−2)=5π+12πn
π(x−2)=5π+12πn
π(x−2)=5π+12πn
Divide both sides by π
π(x−2)=5π+12πn
Divide both sides by πππ(x−2)​=π5π​+π12πn​
Simplify
ππ(x−2)​=π5π​+π12πn​
Simplify ππ(x−2)​:x−2
ππ(x−2)​
Cancel the common factor: π=x−2
Simplify π5π​+π12πn​:5+12n
π5π​+π12πn​
Cancel π5π​:5
π5π​
Cancel the common factor: π=5
=5+π12πn​
Cancel π12πn​:12n
π12πn​
Cancel the common factor: π=12n
=5+12n
x−2=5+12n
x−2=5+12n
x−2=5+12n
Move 2to the right side
x−2=5+12n
Add 2 to both sidesx−2+2=5+12n+2
Simplifyx=12n+7
x=12n+7
x=12n+3,x=12n+7

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(1-sin(x))(1-sin(x))=cos^2(x)2cos(x)=cos^2(x)-12sin(v)csc(v)-csc(v)=4sin(v)-22cos(2x)=4cos(x)(sin(42))/(22)=(sin(B))/(12)

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor x,2sin((pi(x-2))/6)=1 ?

    The general solution for solvefor x,2sin((pi(x-2))/6)=1 is x=12n+3,x=12n+7
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024