Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos(2x)=4cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos(2x)=4cos(x)

Solution

x=1.94553…+2πn,x=−1.94553…+2πn
+1
Degrees
x=111.47070…∘+360∘n,x=−111.47070…∘+360∘n
Solution steps
2cos(2x)=4cos(x)
Subtract 4cos(x) from both sides2cos(2x)−4cos(x)=0
Rewrite using trig identities
2cos(2x)−4cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=2(2cos2(x)−1)−4cos(x)
(−1+2cos2(x))⋅2−4cos(x)=0
Solve by substitution
(−1+2cos2(x))⋅2−4cos(x)=0
Let: cos(x)=u(−1+2u2)⋅2−4u=0
(−1+2u2)⋅2−4u=0:u=21+3​​,u=21−3​​
(−1+2u2)⋅2−4u=0
Expand (−1+2u2)⋅2−4u:−2+4u2−4u
(−1+2u2)⋅2−4u
=2(−1+2u2)−4u
Expand 2(−1+2u2):−2+4u2
2(−1+2u2)
Apply the distributive law: a(b+c)=ab+aca=2,b=−1,c=2u2=2(−1)+2⋅2u2
Apply minus-plus rules+(−a)=−a=−2⋅1+2⋅2u2
Simplify −2⋅1+2⋅2u2:−2+4u2
−2⋅1+2⋅2u2
Multiply the numbers: 2⋅1=2=−2+2⋅2u2
Multiply the numbers: 2⋅2=4=−2+4u2
=−2+4u2
=−2+4u2−4u
−2+4u2−4u=0
Write in the standard form ax2+bx+c=04u2−4u−2=0
Solve with the quadratic formula
4u2−4u−2=0
Quadratic Equation Formula:
For a=4,b=−4,c=−2u1,2​=2⋅4−(−4)±(−4)2−4⋅4(−2)​​
u1,2​=2⋅4−(−4)±(−4)2−4⋅4(−2)​​
(−4)2−4⋅4(−2)​=43​
(−4)2−4⋅4(−2)​
Apply rule −(−a)=a=(−4)2+4⋅4⋅2​
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42+4⋅4⋅2​
Multiply the numbers: 4⋅4⋅2=32=42+32​
42=16=16+32​
Add the numbers: 16+32=48=48​
Prime factorization of 48:24⋅3
48
48divides by 248=24⋅2=2⋅24
24divides by 224=12⋅2=2⋅2⋅12
12divides by 212=6⋅2=2⋅2⋅2⋅6
6divides by 26=3⋅2=2⋅2⋅2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅3
=24⋅3
=24⋅3​
Apply radical rule: =3​24​
Apply radical rule: 24​=224​=22=223​
Refine=43​
u1,2​=2⋅4−(−4)±43​​
Separate the solutionsu1​=2⋅4−(−4)+43​​,u2​=2⋅4−(−4)−43​​
u=2⋅4−(−4)+43​​:21+3​​
2⋅4−(−4)+43​​
Apply rule −(−a)=a=2⋅44+43​​
Multiply the numbers: 2⋅4=8=84+43​​
Factor 4+43​:4(1+3​)
4+43​
Rewrite as=4⋅1+43​
Factor out common term 4=4(1+3​)
=84(1+3​)​
Cancel the common factor: 4=21+3​​
u=2⋅4−(−4)−43​​:21−3​​
2⋅4−(−4)−43​​
Apply rule −(−a)=a=2⋅44−43​​
Multiply the numbers: 2⋅4=8=84−43​​
Factor 4−43​:4(1−3​)
4−43​
Rewrite as=4⋅1−43​
Factor out common term 4=4(1−3​)
=84(1−3​)​
Cancel the common factor: 4=21−3​​
The solutions to the quadratic equation are:u=21+3​​,u=21−3​​
Substitute back u=cos(x)cos(x)=21+3​​,cos(x)=21−3​​
cos(x)=21+3​​,cos(x)=21−3​​
cos(x)=21+3​​:No Solution
cos(x)=21+3​​
−1≤cos(x)≤1NoSolution
cos(x)=21−3​​:x=arccos(21−3​​)+2πn,x=−arccos(21−3​​)+2πn
cos(x)=21−3​​
Apply trig inverse properties
cos(x)=21−3​​
General solutions for cos(x)=21−3​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(21−3​​)+2πn,x=−arccos(21−3​​)+2πn
x=arccos(21−3​​)+2πn,x=−arccos(21−3​​)+2πn
Combine all the solutionsx=arccos(21−3​​)+2πn,x=−arccos(21−3​​)+2πn
Show solutions in decimal formx=1.94553…+2πn,x=−1.94553…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(42))/(22)=(sin(B))/(12)sin(θ)= 16/14tan(θ)= 83/47solvefor x,2sin(x)-cos(x)sin(x)=05=5sin(4θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2cos(2x)=4cos(x) ?

    The general solution for 2cos(2x)=4cos(x) is x=1.94553…+2pin,x=-1.94553…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024