Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

0=(2pi^2cos(\frac{pix)/(10))}{25}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

0=252π2cos(10πx​)​

Solution

x=5+20n,x=15+20n
+1
Degrees
x=286.47889…∘+1145.91559…∘n,x=859.43669…∘+1145.91559…∘n
Solution steps
0=252π2cos(10πx​)​
Switch sides252π2cos(10πx​)​=0
Multiply both sides by 25
252π2cos(10πx​)​=0
Multiply both sides by 252525⋅2π2cos(10πx​)​=0⋅25
Simplify2π2cos(10πx​)=0
2π2cos(10πx​)=0
Divide both sides by 2π2
2π2cos(10πx​)=0
Divide both sides by 2π22π22π2cos(10πx​)​=2π20​
Simplifycos(10πx​)=0
cos(10πx​)=0
General solutions for cos(10πx​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
10πx​=2π​+2πn,10πx​=23π​+2πn
10πx​=2π​+2πn,10πx​=23π​+2πn
Solve 10πx​=2π​+2πn:x=5+20n
10πx​=2π​+2πn
Multiply both sides by 10
10πx​=2π​+2πn
Multiply both sides by 101010πx​=10⋅2π​+10⋅2πn
Simplify
1010πx​=10⋅2π​+10⋅2πn
Simplify 1010πx​:πx
1010πx​
Divide the numbers: 1010​=1=πx
Simplify 10⋅2π​+10⋅2πn:5π+20πn
10⋅2π​+10⋅2πn
10⋅2π​=5π
10⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π10​
Divide the numbers: 210​=5=5π
10⋅2πn=20πn
10⋅2πn
Multiply the numbers: 10⋅2=20=20πn
=5π+20πn
πx=5π+20πn
πx=5π+20πn
πx=5π+20πn
Divide both sides by π
πx=5π+20πn
Divide both sides by πππx​=π5π​+π20πn​
Simplify
ππx​=π5π​+π20πn​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π5π​+π20πn​:5+20n
π5π​+π20πn​
Cancel π5π​:5
π5π​
Cancel the common factor: π=5
=5+π20πn​
Cancel π20πn​:20n
π20πn​
Cancel the common factor: π=20n
=5+20n
x=5+20n
x=5+20n
x=5+20n
Solve 10πx​=23π​+2πn:x=15+20n
10πx​=23π​+2πn
Multiply both sides by 10
10πx​=23π​+2πn
Multiply both sides by 101010πx​=10⋅23π​+10⋅2πn
Simplify
1010πx​=10⋅23π​+10⋅2πn
Simplify 1010πx​:πx
1010πx​
Divide the numbers: 1010​=1=πx
Simplify 10⋅23π​+10⋅2πn:15π+20πn
10⋅23π​+10⋅2πn
10⋅23π​=15π
10⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π10​
Multiply the numbers: 3⋅10=30=230π​
Divide the numbers: 230​=15=15π
10⋅2πn=20πn
10⋅2πn
Multiply the numbers: 10⋅2=20=20πn
=15π+20πn
πx=15π+20πn
πx=15π+20πn
πx=15π+20πn
Divide both sides by π
πx=15π+20πn
Divide both sides by πππx​=π15π​+π20πn​
Simplify
ππx​=π15π​+π20πn​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π15π​+π20πn​:15+20n
π15π​+π20πn​
Cancel π15π​:15
π15π​
Cancel the common factor: π=15
=15+π20πn​
Cancel π20πn​:20n
π20πn​
Cancel the common factor: π=20n
=15+20n
x=15+20n
x=15+20n
x=15+20n
x=5+20n,x=15+20n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

300cos(70)=375cos(θ)812.25=399.6001+400-1140cos(a)-0.6=sin(2x)solvefor x,(sin(pix)+cos(piy))^5=36sin(θ)=-(sqrt(2))/2 ,0<= θ<2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for 0=(2pi^2cos(\frac{pix)/(10))}{25} ?

    The general solution for 0=(2pi^2cos(\frac{pix)/(10))}{25} is x=5+20n,x=15+20n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024