Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

100=211.49-20.96cosh(0.03291765x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

100=211.49−20.96cosh(0.03291765x)

Solution

x=2938901​ln(209611149−119906985​​),x=2938901​ln(209611149+119906985​​)
+1
Degrees
x=−4099.95343…∘,x=4099.95343…∘
Solution steps
100=211.49−20.96cosh(0.03291765x)
Switch sides211.49−20.96cosh(0.03291765x)=100
Rewrite using trig identities
211.49−20.96cosh(0.03291765x)=100
Use the Hyperbolic identity: cosh(x)=2ex+e−x​211.49−20.96⋅2e0.03291765x+e−0.03291765x​=100
211.49−20.96⋅2e0.03291765x+e−0.03291765x​=100
211.49−20.96⋅2e0.03291765x+e−0.03291765x​=100:x=2938901​ln(209611149−119906985​​),x=2938901​ln(209611149+119906985​​)
211.49−20.96⋅2e0.03291765x+e−0.03291765x​=100
Apply exponent rules
211.49−20.96⋅2e0.03291765x+e−0.03291765x​=100
Apply exponent rule: abc=(ab)ce0.03291765x=(ex)0.03291765,e−0.03291765x=(ex)−0.03291765211.49−20.96⋅2(ex)0.03291765+(ex)−0.03291765​=100
211.49−20.96⋅2(ex)0.03291765+(ex)−0.03291765​=100
Rewrite the equation with ex=u211.49−20.96⋅2(u)0.03291765+(u)−0.03291765​=100
Solve 211.49−20.96⋅2u0.03291765+u−0.03291765​=100:u=(209611149−119906985​​)2938901​,u=(209611149+119906985​​)2938901​
211.49−20.96⋅2u0.03291765+u−0.03291765​=100
Expand 211.49−20.96⋅2u0.03291765+u−0.03291765​:211.49−220.96u0.03291765​−2u0.0329176520.96​
211.49−20.96⋅2u0.03291765+u−0.03291765​
2u0.03291765+u−0.03291765​=2u0.03291765u0.0658353+1​
2u0.03291765+u−0.03291765​
Apply exponent rule: a−b=ab1​=2u0.03291765+u0.032917651​​
Join u0.03291765+u0.032917651​:u0.03291765u0.0658353+1​
u0.03291765+u0.032917651​
Convert element to fraction: u0.03291765=u0.03291765u0.03291765u0.03291765​=u0.03291765u0.03291765u0.03291765​+u0.032917651​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=u0.03291765u0.03291765u0.03291765+1​
u0.03291765u0.03291765+1=u0.0658353+1
u0.03291765u0.03291765+1
u0.03291765u0.03291765=u0.0658353
u0.03291765u0.03291765
Apply exponent rule: ab⋅ac=ab+cu0.03291765u0.03291765=u0.03291765+0.03291765=u0.03291765+0.03291765
Add the numbers: 0.03291765+0.03291765=0.0658353=u0.0658353
=u0.0658353+1
=u0.03291765u0.0658353+1​
=2u0.03291765u0.0658353+1​​
Apply the fraction rule: acb​​=c⋅ab​=u0.03291765⋅2u0.0658353+1​
=211.49−20.96⋅2u0.03291765u0.0658353+1​
20.96⋅u0.03291765⋅2u0.0658353+1​=2u0.0329176520.96u0.0658353+20.96​
20.96⋅u0.03291765⋅2u0.0658353+1​
Multiply fractions: a⋅cb​=ca⋅b​=u0.03291765⋅2(u0.0658353+1)⋅20.96​
Expand (u0.0658353+1)⋅20.96:20.96u0.0658353+20.96
(u0.0658353+1)⋅20.96
=20.96(u0.0658353+1)
Apply the distributive law: a(b+c)=ab+aca=20.96,b=u0.0658353,c=1=20.96u0.0658353+20.96⋅1
=20.96u0.0658353+1⋅20.96
Multiply the numbers: 1⋅20.96=20.96=20.96u0.0658353+20.96
=2u0.0329176520.96u0.0658353+20.96​
=211.49−2u0.0329176520.96u0.0658353+20.96​
Apply the fraction rule: ca±b​=ca​±cb​u0.03291765⋅220.96u0.0658353+20.96​=−(u0.03291765⋅220.96u0.0658353​)−(u0.03291765⋅220.96​)=211.49−(2u0.0329176520.96u0.0658353​)−(2u0.0329176520.96​)
Remove parentheses: (a)=a=211.49−u0.03291765⋅220.96u0.0658353​−u0.03291765⋅220.96​
Cancel u0.03291765⋅220.96u0.0658353​:220.96u0.03291765​
u0.03291765⋅220.96u0.0658353​
Cancel u0.03291765⋅220.96u0.0658353​:220.96u0.03291765​
u0.03291765⋅220.96u0.0658353​
Apply exponent rule: xbxa​=xa−bu0.03291765u0.0658353​=u0.0658353−0.03291765=220.96u0.0658353−0.03291765​
Subtract the numbers: 0.0658353−0.03291765=0.03291765=220.96u0.03291765​
=220.96u0.03291765​
=211.49−220.96u0.03291765​−2u0.0329176520.96​
211.49−220.96u0.03291765​−2u0.0329176520.96​=100
Use the following exponent property:an=(am1​)(n⋅m)u0.03291765=(u89011​)(0.03291765⋅8901)211.49−220.96(u89011​)293​−2(u89011​)29320.96​=100
Rewrite the equation with u89011​=v211.49−220.96v293​−2v29320.96​=100
Solve
211.49−220.96v293​−2v29320.96​=100
Move 211.49to the right side
211.49−220.96v293​−2v29320.96​=100
Subtract 211.49 from both sides211.49−220.96v293​−2v29320.96​−211.49=100−211.49
Simplify−220.96v293​−2v29320.96​=−111.49
−220.96v293​−2v29320.96​=−111.49
Multiply both sides by v293
−220.96v293​−2v29320.96​=−111.49
Multiply both sides by v293−220.96v293​v293−2v29320.96​v293=−111.49v293
Simplify
−220.96v293​v293−2v29320.96​v293=−111.49v293
Simplify −220.96v293​v293:−220.96v586​
−220.96v293​v293
Multiply fractions: a⋅cb​=ca⋅b​=−220.96v293v293​
20.96v293v293=20.96v586
20.96v293v293
Apply exponent rule: ab⋅ac=ab+cv293v293=v293+293=20.96v293+293
Add the numbers: 293+293=586=20.96v586
=−220.96v586​
Simplify −2v29320.96​v293:−220.96​
−2v29320.96​v293
Multiply fractions: a⋅cb​=ca⋅b​=−2v29320.96v293​
Cancel the common factor: v293=−220.96​
−220.96v586​−220.96​=−111.49v293
−220.96v586​−220.96​=−111.49v293
−220.96v586​−220.96​=−111.49v293
Solve
−220.96v586​−220.96​=−111.49v293
Multiply both sides by 100
−220.96v586​−220.96​=−111.49v293
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 100−220.96v586​⋅100−220.96​⋅100=−111.49v293⋅100
Refine−1048v586−1048=−11149v293
−1048v586−1048=−11149v293
Move 11149v293to the left side
−1048v586−1048=−11149v293
Add 11149v293 to both sides−1048v586−1048+11149v293=−11149v293+11149v293
Simplify−1048v586−1048+11149v293=0
−1048v586−1048+11149v293=0
Write in the standard form an​xn+…+a1​x+a0​=0−1048v586+11149v293−1048=0
Rewrite the equation with u=v293 and u2=v586−1048u2+11149u−1048=0
Solve −1048u2+11149u−1048=0:u=209611149−119906985​​,u=209611149+119906985​​
−1048u2+11149u−1048=0
Solve with the quadratic formula
−1048u2+11149u−1048=0
Quadratic Equation Formula:
For a=−1048,b=11149,c=−1048u1,2​=2(−1048)−11149±111492−4(−1048)(−1048)​​
u1,2​=2(−1048)−11149±111492−4(−1048)(−1048)​​
111492−4(−1048)(−1048)​=119906985​
111492−4(−1048)(−1048)​
Apply rule −(−a)=a=111492−4⋅1048⋅1048​
Multiply the numbers: 4⋅1048⋅1048=4393216=111492−4393216​
111492=124300201=124300201−4393216​
Subtract the numbers: 124300201−4393216=119906985=119906985​
u1,2​=2(−1048)−11149±119906985​​
Separate the solutionsu1​=2(−1048)−11149+119906985​​,u2​=2(−1048)−11149−119906985​​
u=2(−1048)−11149+119906985​​:209611149−119906985​​
2(−1048)−11149+119906985​​
Remove parentheses: (−a)=−a=−2⋅1048−11149+119906985​​
Multiply the numbers: 2⋅1048=2096=−2096−11149+119906985​​
Apply the fraction rule: −b−a​=ba​−11149+119906985​=−(11149−119906985​)=209611149−119906985​​
u=2(−1048)−11149−119906985​​:209611149+119906985​​
2(−1048)−11149−119906985​​
Remove parentheses: (−a)=−a=−2⋅1048−11149−119906985​​
Multiply the numbers: 2⋅1048=2096=−2096−11149−119906985​​
Apply the fraction rule: −b−a​=ba​−11149−119906985​=−(11149+119906985​)=209611149+119906985​​
The solutions to the quadratic equation are:u=209611149−119906985​​,u=209611149+119906985​​
u=209611149−119906985​​,u=209611149+119906985​​
Substitute back u=v293,solve for v
Solve
v293=209611149−119906985​​
For xn=f(a), n is odd, the solution is
Solve
v293=209611149+119906985​​
For xn=f(a), n is odd, the solution is
The solutions are
Verify Solutions
Find undefined (singularity) points:v=0
Take the denominator(s) of 211.49−220.96v293​−2v29320.96​ and compare to zero
Solve 2v293=0:v=0
2v293=0
Divide both sides by 2
2v293=0
Divide both sides by 2
2v293=0
Divide both sides by 222v293​=20​
Simplifyv293=0
v293=0
Apply rule xn=0⇒x=0
v=0
The following points are undefinedv=0
Combine undefined points with solutions:
Substitute back v=u89011​,solve for u
Solve
Take both sides of the equation to the power of 8901:u=(209611149−119906985​​)2938901​
Expand (u89011​)8901:u
(u89011​)8901
Apply exponent rule: (ab)c=abc=u89011​⋅8901
89011​⋅8901=1
89011​⋅8901
Multiply fractions: a⋅cb​=ca⋅b​=89011⋅8901​
Cancel the common factor: 8901=1
=u
Expand
Apply radical rule: =​(209611149−119906985​​)2931​​8901
Apply exponent rule: (ab)c=abc=(209611149−119906985​​)2931​⋅8901
2931​⋅8901=2938901​
2931​⋅8901
Multiply fractions: a⋅cb​=ca⋅b​=2931⋅8901​
Multiply the numbers: 1⋅8901=8901=2938901​
=(209611149−119906985​​)2938901​
u=(209611149−119906985​​)2938901​
u=(209611149−119906985​​)2938901​
Verify Solutions:u=(209611149−119906985​​)2938901​True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=(209611149−119906985​​)2938901​:True
​(209611149−119906985​​)2938901​​89011​
Apply exponent rule: (ab)c=abc=(209611149−119906985​​)2938901​⋅89011​
Refine=(209611149−119906985​​)2931​
True
The solution isu=(209611149−119906985​​)2938901​
Solve
Take both sides of the equation to the power of 8901:u=(209611149+119906985​​)2938901​
Expand (u89011​)8901:u
(u89011​)8901
Apply exponent rule: (ab)c=abc=u89011​⋅8901
89011​⋅8901=1
89011​⋅8901
Multiply fractions: a⋅cb​=ca⋅b​=89011⋅8901​
Cancel the common factor: 8901=1
=u
Expand
Apply radical rule: =​(209611149+119906985​​)2931​​8901
Apply exponent rule: (ab)c=abc=(209611149+119906985​​)2931​⋅8901
2931​⋅8901=2938901​
2931​⋅8901
Multiply fractions: a⋅cb​=ca⋅b​=2931⋅8901​
Multiply the numbers: 1⋅8901=8901=2938901​
=(209611149+119906985​​)2938901​
u=(209611149+119906985​​)2938901​
u=(209611149+119906985​​)2938901​
Verify Solutions:u=(209611149+119906985​​)2938901​True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=(209611149+119906985​​)2938901​:True
​(209611149+119906985​​)2938901​​89011​
Apply exponent rule: (ab)c=abc=(209611149+119906985​​)2938901​⋅89011​
Refine=(209611149+119906985​​)2931​
True
The solution isu=(209611149+119906985​​)2938901​
u=(209611149−119906985​​)2938901​,u=(209611149+119906985​​)2938901​
Verify Solutions:u=(209611149−119906985​​)2938901​True,u=(209611149+119906985​​)2938901​True
Check the solutions by plugging them into 211.49−20.962u0.03291765+u−0.03291765​=100
Remove the ones that don't agree with the equation.
Plug in u=(209611149−119906985​​)2938901​:True
211.49−20.96⋅2((209611149−119906985​​)2938901​)0.03291765+((209611149−119906985​​)2938901​)−0.03291765​=100
211.49−20.96⋅2((209611149−119906985​​)2938901​)0.03291765+((209611149−119906985​​)2938901​)−0.03291765​=99.99999…
211.49−20.96⋅2((209611149−119906985​​)2938901​)0.03291765+((209611149−119906985​​)2938901​)−0.03291765​
2((209611149−119906985​​)2938901​)0.03291765+((209611149−119906985​​)2938901​)−0.03291765​=210.63835…​
2((209611149−119906985​​)2938901​)0.03291765+((209611149−119906985​​)2938901​)−0.03291765​
​(209611149−119906985​​)2938901​​0.03291765=0.09484…
​(209611149−119906985​​)2938901​​0.03291765
Apply exponent rule: (ab)c=abc=(209611149−119906985​​)2938901​⋅0.03291765
2938901​⋅0.03291765=1.00000…
2938901​⋅0.03291765
Multiply fractions: a⋅cb​=ca⋅b​=2938901⋅0.03291765​
Multiply the numbers: 8901⋅0.03291765=293.00000…=293293.00000…​
Divide the numbers: 293293.00000…​=1.00000…=1.00000…
=(209611149−119906985​​)1.00000…
209611149−119906985​​=2096198.79520…​
209611149−119906985​​
Convert element to a decimal form119906985​=10950.20479…=209611149−10950.20479…​
Subtract the numbers: 11149−10950.20479…=198.79520…=2096198.79520…​
=(2096198.79520…​)1.00000…
Divide the numbers: 2096198.79520…​=0.09484…=0.09484…1.00000…
0.09484…1.00000…=0.09484…=0.09484…
​(209611149−119906985​​)2938901​​−0.03291765=10.54351…
​(209611149−119906985​​)2938901​​−0.03291765
Apply exponent rule: a−b=ab1​=((209611149−119906985​​)2938901​)0.032917651​
​(209611149−119906985​​)2938901​​0.03291765:(209611149−119906985​​)1.00000…
Apply exponent rule: (ab)c=abc=(209611149−119906985​​)2938901​⋅0.03291765
2938901​⋅0.03291765=1.00000…
2938901​⋅0.03291765
Multiply fractions: a⋅cb​=ca⋅b​=2938901⋅0.03291765​
Multiply the numbers: 8901⋅0.03291765=293.00000…=293293.00000…​
Divide the numbers: 293293.00000…​=1.00000…=1.00000…
=(209611149−119906985​​)1.00000…
=(209611149−119906985​​)1.00000…1​
209611149−119906985​​=2096198.79520…​
209611149−119906985​​
Convert element to a decimal form119906985​=10950.20479…=209611149−10950.20479…​
Subtract the numbers: 11149−10950.20479…=198.79520…=2096198.79520…​
=(2096198.79520…​)1.00000…1​
(2096198.79520…​)1.00000…=0.09484…=0.09484…1​
Divide the numbers: 0.09484…1​=10.54351…=10.54351…
=20.09484…+10.54351…​
Add the numbers: 0.09484…+10.54351…=10.63835…=210.63835…​
=211.49−20.96⋅210.63835…​
20.96⋅210.63835…​=111.49000…
20.96⋅210.63835…​
Multiply fractions: a⋅cb​=ca⋅b​=210.63835…⋅20.96​
Multiply the numbers: 10.63835…⋅20.96=222.98000…=2222.98000…​
Divide the numbers: 2222.98000…​=111.49000…=111.49000…
=211.49−111.49000…
Subtract the numbers: 211.49−111.49000…=99.99999…=99.99999…
99.99999…=100
True
Plug in u=(209611149+119906985​​)2938901​:True
211.49−20.96⋅2((209611149+119906985​​)2938901​)0.03291765+((209611149+119906985​​)2938901​)−0.03291765​=100
211.49−20.96⋅2((209611149+119906985​​)2938901​)0.03291765+((209611149+119906985​​)2938901​)−0.03291765​=99.99999…
211.49−20.96⋅2((209611149+119906985​​)2938901​)0.03291765+((209611149+119906985​​)2938901​)−0.03291765​
2((209611149+119906985​​)2938901​)0.03291765+((209611149+119906985​​)2938901​)−0.03291765​=210.63835…​
2((209611149+119906985​​)2938901​)0.03291765+((209611149+119906985​​)2938901​)−0.03291765​
​(209611149+119906985​​)2938901​​0.03291765=10.54351…
​(209611149+119906985​​)2938901​​0.03291765
Apply exponent rule: (ab)c=abc=(209611149+119906985​​)2938901​⋅0.03291765
2938901​⋅0.03291765=1.00000…
2938901​⋅0.03291765
Multiply fractions: a⋅cb​=ca⋅b​=2938901⋅0.03291765​
Multiply the numbers: 8901⋅0.03291765=293.00000…=293293.00000…​
Divide the numbers: 293293.00000…​=1.00000…=1.00000…
=(209611149+119906985​​)1.00000…
209611149+119906985​​=209622099.20479…​
209611149+119906985​​
Convert element to a decimal form119906985​=10950.20479…=209611149+10950.20479…​
Add the numbers: 11149+10950.20479…=22099.20479…=209622099.20479…​
=(209622099.20479…​)1.00000…
Divide the numbers: 209622099.20479…​=10.54351…=10.54351…1.00000…
10.54351…1.00000…=10.54351…=10.54351…
​(209611149+119906985​​)2938901​​−0.03291765=0.09484…
​(209611149+119906985​​)2938901​​−0.03291765
Apply exponent rule: a−b=ab1​=((209611149+119906985​​)2938901​)0.032917651​
​(209611149+119906985​​)2938901​​0.03291765:(209611149+119906985​​)1.00000…
Apply exponent rule: (ab)c=abc=(209611149+119906985​​)2938901​⋅0.03291765
2938901​⋅0.03291765=1.00000…
2938901​⋅0.03291765
Multiply fractions: a⋅cb​=ca⋅b​=2938901⋅0.03291765​
Multiply the numbers: 8901⋅0.03291765=293.00000…=293293.00000…​
Divide the numbers: 293293.00000…​=1.00000…=1.00000…
=(209611149+119906985​​)1.00000…
=(209611149+119906985​​)1.00000…1​
209611149+119906985​​=209622099.20479…​
209611149+119906985​​
Convert element to a decimal form119906985​=10950.20479…=209611149+10950.20479…​
Add the numbers: 11149+10950.20479…=22099.20479…=209622099.20479…​
=(209622099.20479…​)1.00000…1​
(209622099.20479…​)1.00000…=10.54351…=10.54351…1​
Divide the numbers: 10.54351…1​=0.09484…=0.09484…
=210.54351…+0.09484…​
Add the numbers: 10.54351…+0.09484…=10.63835…=210.63835…​
=211.49−20.96⋅210.63835…​
20.96⋅210.63835…​=111.49000…
20.96⋅210.63835…​
Multiply fractions: a⋅cb​=ca⋅b​=210.63835…⋅20.96​
Multiply the numbers: 10.63835…⋅20.96=222.98000…=2222.98000…​
Divide the numbers: 2222.98000…​=111.49000…=111.49000…
=211.49−111.49000…
Subtract the numbers: 211.49−111.49000…=99.99999…=99.99999…
99.99999…=100
True
The solutions areu=(209611149−119906985​​)2938901​,u=(209611149+119906985​​)2938901​
u=(209611149−119906985​​)2938901​,u=(209611149+119906985​​)2938901​
Substitute back u=ex,solve for x
Solve ex=(209611149−119906985​​)2938901​:x=2938901​ln(209611149−119906985​​)
ex=(209611149−119906985​​)2938901​
Apply exponent rules
ex=(209611149−119906985​​)2938901​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln​(209611149−119906985​​)2938901​​
Apply log rule: ln(ea)=aln(ex)=xx=ln​(209611149−119906985​​)2938901​​
Apply log rule: ln(xa)=a⋅ln(x)ln​(209611149−119906985​​)2938901​​=2938901​ln(209611149−119906985​​)x=2938901​ln(209611149−119906985​​)
x=2938901​ln(209611149−119906985​​)
Solve ex=(209611149+119906985​​)2938901​:x=2938901​ln(209611149+119906985​​)
ex=(209611149+119906985​​)2938901​
Apply exponent rules
ex=(209611149+119906985​​)2938901​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln​(209611149+119906985​​)2938901​​
Apply log rule: ln(ea)=aln(ex)=xx=ln​(209611149+119906985​​)2938901​​
Apply log rule: ln(xa)=a⋅ln(x)ln​(209611149+119906985​​)2938901​​=2938901​ln(209611149+119906985​​)x=2938901​ln(209611149+119906985​​)
x=2938901​ln(209611149+119906985​​)
x=2938901​ln(209611149−119906985​​),x=2938901​ln(209611149+119906985​​)
x=2938901​ln(209611149−119906985​​),x=2938901​ln(209611149+119906985​​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sec^2(x)+4cos^2(x)=7cos(θ)= 43/908cos(2x-5)=3(sqrt(116))/(sin(90))= 4/(sin(x))3/(cos^2(x))=(7+4)/(cot(x))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024