Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sec^2(x)+4cos^2(x)=7

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sec2(x)+4cos2(x)=7

Solution

x=6π​+2πn,x=611π​+2πn,x=65π​+2πn,x=67π​+2πn,x=2πn,x=π+2πn
+1
Degrees
x=30∘+360∘n,x=330∘+360∘n,x=150∘+360∘n,x=210∘+360∘n,x=0∘+360∘n,x=180∘+360∘n
Solution steps
3sec2(x)+4cos2(x)=7
Subtract 7 from both sides3sec2(x)+4cos2(x)−7=0
Rewrite using trig identities
−7+3sec2(x)+4cos2(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=−7+3sec2(x)+4(sec(x)1​)2
4(sec(x)1​)2=sec2(x)4​
4(sec(x)1​)2
(sec(x)1​)2=sec2(x)1​
(sec(x)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(x)12​
Apply rule 1a=112=1=sec2(x)1​
=4⋅sec2(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sec2(x)1⋅4​
Multiply the numbers: 1⋅4=4=sec2(x)4​
=−7+3sec2(x)+sec2(x)4​
−7+sec2(x)4​+3sec2(x)=0
Solve by substitution
−7+sec2(x)4​+3sec2(x)=0
Let: sec(x)=u−7+u24​+3u2=0
−7+u24​+3u2=0:u=323​​,u=−323​​,u=1,u=−1
−7+u24​+3u2=0
Multiply both sides by u2
−7+u24​+3u2=0
Multiply both sides by u2−7u2+u24​u2+3u2u2=0⋅u2
Simplify
−7u2+u24​u2+3u2u2=0⋅u2
Simplify u24​u2:4
u24​u2
Multiply fractions: a⋅cb​=ca⋅b​=u24u2​
Cancel the common factor: u2=4
Simplify 3u2u2:3u4
3u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=3u2+2
Add the numbers: 2+2=4=3u4
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
−7u2+4+3u4=0
−7u2+4+3u4=0
−7u2+4+3u4=0
Solve −7u2+4+3u4=0:u=323​​,u=−323​​,u=1,u=−1
−7u2+4+3u4=0
Write in the standard form an​xn+…+a1​x+a0​=03u4−7u2+4=0
Rewrite the equation with v=u2 and v2=u43v2−7v+4=0
Solve 3v2−7v+4=0:v=34​,v=1
3v2−7v+4=0
Solve with the quadratic formula
3v2−7v+4=0
Quadratic Equation Formula:
For a=3,b=−7,c=4v1,2​=2⋅3−(−7)±(−7)2−4⋅3⋅4​​
v1,2​=2⋅3−(−7)±(−7)2−4⋅3⋅4​​
(−7)2−4⋅3⋅4​=1
(−7)2−4⋅3⋅4​
Apply exponent rule: (−a)n=an,if n is even(−7)2=72=72−4⋅3⋅4​
Multiply the numbers: 4⋅3⋅4=48=72−48​
72=49=49−48​
Subtract the numbers: 49−48=1=1​
Apply rule 1​=1=1
v1,2​=2⋅3−(−7)±1​
Separate the solutionsv1​=2⋅3−(−7)+1​,v2​=2⋅3−(−7)−1​
v=2⋅3−(−7)+1​:34​
2⋅3−(−7)+1​
Apply rule −(−a)=a=2⋅37+1​
Add the numbers: 7+1=8=2⋅38​
Multiply the numbers: 2⋅3=6=68​
Cancel the common factor: 2=34​
v=2⋅3−(−7)−1​:1
2⋅3−(−7)−1​
Apply rule −(−a)=a=2⋅37−1​
Subtract the numbers: 7−1=6=2⋅36​
Multiply the numbers: 2⋅3=6=66​
Apply rule aa​=1=1
The solutions to the quadratic equation are:v=34​,v=1
v=34​,v=1
Substitute back v=u2,solve for u
Solve u2=34​:u=323​​,u=−323​​
u2=34​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=34​​,u=−34​​
34​​=323​​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
Rationalize 3​2​:323​​
3​2​
Multiply by the conjugate 3​3​​=3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=323​​
=323​​
−34​​=−323​​
−34​​
Simplify 34​​:3​2​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
u=323​​,u=−323​​
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
The solutions are
u=323​​,u=−323​​,u=1,u=−1
u=323​​,u=−323​​,u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −7+u24​+3u2 and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=323​​,u=−323​​,u=1,u=−1
Substitute back u=sec(x)sec(x)=323​​,sec(x)=−323​​,sec(x)=1,sec(x)=−1
sec(x)=323​​,sec(x)=−323​​,sec(x)=1,sec(x)=−1
sec(x)=323​​:x=6π​+2πn,x=611π​+2πn
sec(x)=323​​
General solutions for sec(x)=323​​
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=6π​+2πn,x=611π​+2πn
x=6π​+2πn,x=611π​+2πn
sec(x)=−323​​:x=65π​+2πn,x=67π​+2πn
sec(x)=−323​​
General solutions for sec(x)=−323​​
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=65π​+2πn,x=67π​+2πn
x=65π​+2πn,x=67π​+2πn
sec(x)=1:x=2πn
sec(x)=1
General solutions for sec(x)=1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
sec(x)=−1:x=π+2πn
sec(x)=−1
General solutions for sec(x)=−1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=π+2πn
x=π+2πn
Combine all the solutionsx=6π​+2πn,x=611π​+2πn,x=65π​+2πn,x=67π​+2πn,x=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)= 43/908cos(2x-5)=3(sqrt(116))/(sin(90))= 4/(sin(x))3/(cos^2(x))=(7+4)/(cot(x))sin(x)=0.01
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024