Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3/(cos^2(x))=(7+4)/(cot(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)3​=cot(x)7+4​

Solution

x=20.57693…​+πn,x=2π​−20.57693…​+πn
+1
Degrees
x=16.52786…∘+180∘n,x=73.47213…∘+180∘n
Solution steps
cos2(x)3​=cot(x)7+4​
Subtract cot(x)7+4​ from both sidescos2(x)3​−cot(x)11​=0
Simplify cos2(x)3​−cot(x)11​:cos2(x)cot(x)3cot(x)−11cos2(x)​
cos2(x)3​−cot(x)11​
Least Common Multiplier of cos2(x),cot(x):cos2(x)cot(x)
cos2(x),cot(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos2(x) or cot(x)=cos2(x)cot(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(x)cot(x)
For cos2(x)3​:multiply the denominator and numerator by cot(x)cos2(x)3​=cos2(x)cot(x)3cot(x)​
For cot(x)11​:multiply the denominator and numerator by cos2(x)cot(x)11​=cot(x)cos2(x)11cos2(x)​
=cos2(x)cot(x)3cot(x)​−cot(x)cos2(x)11cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)cot(x)3cot(x)−11cos2(x)​
cos2(x)cot(x)3cot(x)−11cos2(x)​=0
g(x)f(x)​=0⇒f(x)=03cot(x)−11cos2(x)=0
Express with sin, cos
−11cos2(x)+3cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−11cos2(x)+3⋅sin(x)cos(x)​
Simplify −11cos2(x)+3⋅sin(x)cos(x)​:sin(x)−11cos2(x)sin(x)+3cos(x)​
−11cos2(x)+3⋅sin(x)cos(x)​
Multiply 3⋅sin(x)cos(x)​:sin(x)3cos(x)​
3⋅sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)⋅3​
=−11cos2(x)+sin(x)3cos(x)​
Convert element to fraction: 11cos2(x)=sin(x)11cos2(x)sin(x)​=−sin(x)11cos2(x)sin(x)​+sin(x)cos(x)⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)−11cos2(x)sin(x)+cos(x)⋅3​
=sin(x)−11cos2(x)sin(x)+3cos(x)​
sin(x)3cos(x)−11cos2(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=03cos(x)−11cos2(x)sin(x)=0
Factor 3cos(x)−11cos2(x)sin(x):cos(x)(3−11sin(x)cos(x))
3cos(x)−11cos2(x)sin(x)
Apply exponent rule: ab+c=abacsin(x)cos2(x)=cos(x)cos(x)=3cos(x)−11cos(x)cos(x)
Factor out common term cos(x)=cos(x)(3−11sin(x)cos(x))
cos(x)(3−11sin(x)cos(x))=0
Solving each part separatelycos(x)=0or3−11sin(x)cos(x)=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
3−11sin(x)cos(x)=0:x=2arcsin(116​)​+πn,x=2π​−2arcsin(116​)​+πn
3−11sin(x)cos(x)=0
Rewrite using trig identities
3−11sin(x)cos(x)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=3−11⋅2sin(2x)​
3−11⋅2sin(2x)​=0
Move 3to the right side
3−11⋅2sin(2x)​=0
Subtract 3 from both sides3−11⋅2sin(2x)​−3=0−3
Simplify−11⋅2sin(2x)​=−3
−11⋅2sin(2x)​=−3
Refine −11⋅2sin(2x)​:−211sin(2x)​
−11⋅2sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=−2sin(2x)⋅11​
−211sin(2x)​=−3
Multiply both sides by 2
−211sin(2x)​=−3
Multiply both sides by 2−211sin(2x)​⋅2=−3⋅2
Simplify
−211sin(2x)​⋅2=−3⋅2
Simplify −211sin(2x)​⋅2:−11sin(2x)
−211sin(2x)​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=−211sin(2x)⋅2​
Cancel the common factor: 2=−11sin(2x)
Simplify −3⋅2:−6
−3⋅2
Multiply the numbers: 3⋅2=6=−6
−11sin(2x)=−6
−11sin(2x)=−6
−11sin(2x)=−6
Divide both sides by −11
−11sin(2x)=−6
Divide both sides by −11−11−11sin(2x)​=−11−6​
Simplifysin(2x)=116​
sin(2x)=116​
Apply trig inverse properties
sin(2x)=116​
General solutions for sin(2x)=116​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(116​)+2πn,2x=π−arcsin(116​)+2πn
2x=arcsin(116​)+2πn,2x=π−arcsin(116​)+2πn
Solve 2x=arcsin(116​)+2πn:x=2arcsin(116​)​+πn
2x=arcsin(116​)+2πn
Divide both sides by 2
2x=arcsin(116​)+2πn
Divide both sides by 222x​=2arcsin(116​)​+22πn​
Simplifyx=2arcsin(116​)​+πn
x=2arcsin(116​)​+πn
Solve 2x=π−arcsin(116​)+2πn:x=2π​−2arcsin(116​)​+πn
2x=π−arcsin(116​)+2πn
Divide both sides by 2
2x=π−arcsin(116​)+2πn
Divide both sides by 222x​=2π​−2arcsin(116​)​+22πn​
Simplifyx=2π​−2arcsin(116​)​+πn
x=2π​−2arcsin(116​)​+πn
x=2arcsin(116​)​+πn,x=2π​−2arcsin(116​)​+πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=2arcsin(116​)​+πn,x=2π​−2arcsin(116​)​+πn
Since the equation is undefined for:2π​+2πn,23π​+2πnx=2arcsin(116​)​+πn,x=2π​−2arcsin(116​)​+πn
Show solutions in decimal formx=20.57693…​+πn,x=2π​−20.57693…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=0.01sin(x)-sin(2x)=sin^3(x)-sin^2(x)=cos(2x)sin(x)= 4/5 , pi/2 <= 0<pi,sin(2x)2cos^2(θ)-3cos(θ)+1=0,(3pi)/2 <θ<2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for 3/(cos^2(x))=(7+4)/(cot(x)) ?

    The general solution for 3/(cos^2(x))=(7+4)/(cot(x)) is x=(0.57693…)/2+pin,x= pi/2-(0.57693…)/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024