Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos(x^2)-sqrt(2)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos(x2)−2​=0

Solution

x=2π+8πn​​,x=−2π+8πn​​,x=27π+8πn​​,x=−27π+8πn​​
+1
Degrees
x=0∘+152.33118…∘n,x=0∘−152.33118…∘n,x=0∘+196.65871…∘n,x=0∘−196.65871…∘n
Solution steps
2cos(x2)−2​=0
Move 2​to the right side
2cos(x2)−2​=0
Add 2​ to both sides2cos(x2)−2​+2​=0+2​
Simplify2cos(x2)=2​
2cos(x2)=2​
Divide both sides by 2
2cos(x2)=2​
Divide both sides by 222cos(x2)​=22​​
Simplifycos(x2)=22​​
cos(x2)=22​​
General solutions for cos(x2)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x2=4π​+2πn,x2=47π​+2πn
x2=4π​+2πn,x2=47π​+2πn
Solve x2=4π​+2πn:x=2π+8πn​​,x=−2π+8πn​​
x2=4π​+2πn
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=4π​+2πn​,x=−4π​+2πn​
Simplify 4π​+2πn​:2π+8πn​​
4π​+2πn​
Join 4π​+2πn:4π+8πn​
4π​+2πn
Convert element to fraction: 2πn=42πn4​=4π​+42πn⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π+2πn⋅4​
Multiply the numbers: 2⋅4=8=4π+8πn​
=4π+8πn​​
Apply radical rule: assuming a≥0,b≥0=4​π+8πn​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2π+8πn​​
Simplify −4π​+2πn​:−2π+8πn​​
−4π​+2πn​
Join 4π​+2πn:4π+8πn​
4π​+2πn
Convert element to fraction: 2πn=42πn4​=4π​+42πn⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π+2πn⋅4​
Multiply the numbers: 2⋅4=8=4π+8πn​
=−4π+8πn​​
Simplify 4π+8πn​​:2π+8πn​​
4π+8πn​​
Apply radical rule: assuming a≥0,b≥0=4​π+8πn​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2π+8πn​​
=−2π+8πn​​
x=2π+8πn​​,x=−2π+8πn​​
Solve x2=47π​+2πn:x=27π+8πn​​,x=−27π+8πn​​
x2=47π​+2πn
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=47π​+2πn​,x=−47π​+2πn​
Simplify 47π​+2πn​:27π+8πn​​
47π​+2πn​
Join 47π​+2πn:47π+8πn​
47π​+2πn
Convert element to fraction: 2πn=42πn4​=47π​+42πn⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=47π+2πn⋅4​
Multiply the numbers: 2⋅4=8=47π+8πn​
=47π+8πn​​
Apply radical rule: assuming a≥0,b≥0=4​7π+8πn​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=27π+8πn​​
Simplify −47π​+2πn​:−27π+8πn​​
−47π​+2πn​
Join 47π​+2πn:47π+8πn​
47π​+2πn
Convert element to fraction: 2πn=42πn4​=47π​+42πn⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=47π+2πn⋅4​
Multiply the numbers: 2⋅4=8=47π+8πn​
=−47π+8πn​​
Simplify 47π+8πn​​:27π+8πn​​
47π+8πn​​
Apply radical rule: assuming a≥0,b≥0=4​7π+8πn​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=27π+8πn​​
=−27π+8πn​​
x=27π+8πn​​,x=−27π+8πn​​
x=2π+8πn​​,x=−2π+8πn​​,x=27π+8πn​​,x=−27π+8πn​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,sin(x)=-sqrt(2)*cos(x)cos(x)= 1/(cos^2(x))2cos(t)-1=0,0<,=t<= 2pi2sin(2(θ+pi/6))=-sqrt(2)tan(x)=0.2092
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024