Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)= 1/(cos^2(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)=cos2(x)1​

Solution

x=2πn
+1
Degrees
x=0∘+360∘n
Solution steps
cos(x)=cos2(x)1​
Solve by substitution
cos(x)=cos2(x)1​
Let: cos(x)=uu=u21​
u=u21​:u=1,u=−21​+i23​​,u=−21​−i23​​
u=u21​
Multiply both sides by u2
u=u21​
Multiply both sides by u2uu2=u21​u2
Simplify uu2:u3
uu2=u21​u2
Apply exponent rule: ab⋅ac=ab+cuu2=u1+2=u1+2
Add the numbers: 1+2=3=u3
u3=1
u3=1
Solve u3=1:u=1,u=−21​+i23​​,u=−21​−i23​​
u3=1
For x3=f(a) the solutions are
u=1,u=2−1+3​i​,u=2−1−3​i​
Simplify 2−1+3​i​:−21​+i23​​
2−1+3​i​
Rewrite 2−1+3​i​ in standard complex form: −21​+23​​i
2−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​2−1+3​i​=−21​+23​i​=−21​+23​i​
=−21​+23​​i
Simplify 2−1−3​i​:−21​−i23​​
2−1−3​i​
Rewrite 2−1−3​i​ in standard complex form: −21​−23​​i
2−1−3​i​
Apply the fraction rule: ca±b​=ca​±cb​2−1−3​i​=−21​−23​i​=−21​−23​i​
=−21​−23​​i
u=1,u=−21​+i23​​,u=−21​−i23​​
u=1,u=−21​+i23​​,u=−21​−i23​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u21​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−21​+i23​​,u=−21​−i23​​
Substitute back u=cos(x)cos(x)=1,cos(x)=−21​+i23​​,cos(x)=−21​−i23​​
cos(x)=1,cos(x)=−21​+i23​​,cos(x)=−21​−i23​​
cos(x)=1:x=2πn
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−21​+i23​​:No Solution
cos(x)=−21​+i23​​
NoSolution
cos(x)=−21​−i23​​:No Solution
cos(x)=−21​−i23​​
NoSolution
Combine all the solutionsx=2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos(t)-1=0,0<,=t<= 2pi2sin(2(θ+pi/6))=-sqrt(2)tan(x)=0.2092sin(θ+1)=cos(θ)0=sin(x+c)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)= 1/(cos^2(x)) ?

    The general solution for cos(x)= 1/(cos^2(x)) is x=2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024