Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(θ+1)=cos(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(θ+1)=cos(θ)

Solution

θ=−2πn−21​+4π​,θ=−21​−43π​−2πn
+1
Degrees
θ=16.35211…∘−360∘n,θ=−163.64788…∘−360∘n
Solution steps
sin(θ+1)=cos(θ)
Subtract cos(θ) from both sidessin(θ+1)−cos(θ)=0
Rewrite using trig identities
−cos(θ)+sin(1+θ)
Use the following identity: sin(x)=cos(2π​−x)=−cos(θ)+cos(2π​−(1+θ))
−(1+θ):−1−θ
−(1+θ)
Distribute parentheses=−(1)−(θ)
Apply minus-plus rules+(−a)=−a=−1−θ
=−cos(θ)+cos(2π​−1−θ)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(2−1+2π​−θ+θ​)sin(2−1+2π​−θ−θ​)
Simplify −2sin(2−1+2π​−θ+θ​)sin(2−1+2π​−θ−θ​):−2sin(4−2+π​)sin(4−2+π−4θ​)
−2sin(2−1+2π​−θ+θ​)sin(2−1+2π​−θ−θ​)
2−1+2π​−θ+θ​=4−2+π​
2−1+2π​−θ+θ​
Add similar elements: −θ+θ=0=2−1+2π​​
Join −1+2π​:2−2+π​
−1+2π​
Convert element to fraction: 1=21⋅2​=−21⋅2​+2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1⋅2+π​
Multiply the numbers: 1⋅2=2=2−2+π​
=22−2+π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2−2+π​
Multiply the numbers: 2⋅2=4=4−2+π​
=−2sin(4π−2​)sin(2−θ−θ+2π​−1​)
2−1+2π​−θ−θ​=4−2+π−4θ​
2−1+2π​−θ−θ​
Add similar elements: −θ−θ=−2θ=2−1+2π​−2θ​
Join −1+2π​−2θ:2−2+π−4θ​
−1+2π​−2θ
Convert element to fraction: 1=21⋅2​,2θ=22θ2​=−21⋅2​+2π​−22θ⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1⋅2+π−2θ⋅2​
−1⋅2+π−2θ⋅2=−2+π−4θ
−1⋅2+π−2θ⋅2
Multiply the numbers: 1⋅2=2=−2+π−2⋅2θ
Multiply the numbers: 2⋅2=4=−2+π−4θ
=2−2+π−4θ​
=22−2+π−4θ​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2−2+π−4θ​
Multiply the numbers: 2⋅2=4=4−2+π−4θ​
=−2sin(4π−2​)sin(4−4θ+π−2​)
=−2sin(4−2+π​)sin(4−2+π−4θ​)
−2sin(4−2+π​)sin(4−2+π−4θ​)=0
Divide both sides by −2sin(4−2+π​)
−2sin(4−2+π​)sin(4−2+π−4θ​)=0
Divide both sides by −2sin(4−2+π​)−2sin(4−2+π​)−2sin(4−2+π​)sin(4−2+π−4θ​)​=−2sin(4−2+π​)0​
Simplifysin(4−2+π−4θ​)=0
sin(4−2+π−4θ​)=0
General solutions for sin(4−2+π−4θ​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
4−2+π−4θ​=0+2πn,4−2+π−4θ​=π+2πn
4−2+π−4θ​=0+2πn,4−2+π−4θ​=π+2πn
Solve 4−2+π−4θ​=0+2πn:θ=−2πn−21​+4π​
4−2+π−4θ​=0+2πn
0+2πn=2πn4−2+π−4θ​=2πn
Multiply both sides by 4
4−2+π−4θ​=2πn
Multiply both sides by 444(−2+π−4θ)​=4⋅2πn
Simplify−2+π−4θ=8πn
−2+π−4θ=8πn
Move 2to the right side
−2+π−4θ=8πn
Add 2 to both sides−2+π−4θ+2=8πn+2
Simplifyπ−4θ=8πn+2
π−4θ=8πn+2
Move πto the right side
π−4θ=8πn+2
Subtract π from both sidesπ−4θ−π=8πn+2−π
Simplify−4θ=8πn+2−π
−4θ=8πn+2−π
Divide both sides by −4
−4θ=8πn+2−π
Divide both sides by −4−4−4θ​=−48πn​+−42​−−4π​
Simplify
−4−4θ​=−48πn​+−42​−−4π​
Simplify −4−4θ​:θ
−4−4θ​
Apply the fraction rule: −b−a​=ba​=44θ​
Divide the numbers: 44​=1=θ
Simplify −48πn​+−42​−−4π​:−2πn−21​+4π​
−48πn​+−42​−−4π​
−48πn​=−2πn
−48πn​
Apply the fraction rule: −ba​=−ba​=−48πn​
Divide the numbers: 48​=2=−2πn
=−2πn+−42​−−4π​
−42​=−21​
−42​
Apply the fraction rule: −ba​=−ba​=−42​
Cancel the common factor: 2=−21​
=−2πn−21​−−4π​
Refine=−2πn−21​+4π​
θ=−2πn−21​+4π​
θ=−2πn−21​+4π​
θ=−2πn−21​+4π​
Solve 4−2+π−4θ​=π+2πn:θ=−21​−43π​−2πn
4−2+π−4θ​=π+2πn
Multiply both sides by 4
4−2+π−4θ​=π+2πn
Multiply both sides by 444(−2+π−4θ)​=4π+4⋅2πn
Simplify−2+π−4θ=4π+8πn
−2+π−4θ=4π+8πn
Move 2to the right side
−2+π−4θ=4π+8πn
Add 2 to both sides−2+π−4θ+2=4π+8πn+2
Simplifyπ−4θ=4π+8πn+2
π−4θ=4π+8πn+2
Move πto the right side
π−4θ=4π+8πn+2
Subtract π from both sidesπ−4θ−π=4π+8πn+2−π
Simplify−4θ=3π+8πn+2
−4θ=3π+8πn+2
Divide both sides by −4
−4θ=3π+8πn+2
Divide both sides by −4−4−4θ​=−43π​+−48πn​+−42​
Simplify
−4−4θ​=−43π​+−48πn​+−42​
Simplify −4−4θ​:θ
−4−4θ​
Apply the fraction rule: −b−a​=ba​=44θ​
Divide the numbers: 44​=1=θ
Simplify −43π​+−48πn​+−42​:−21​−43π​−2πn
−43π​+−48πn​+−42​
Group like terms=−42​+−43π​+−48πn​
−42​=−21​
−42​
Apply the fraction rule: −ba​=−ba​=−42​
Cancel the common factor: 2=−21​
=−21​+−43π​+−48πn​
Apply the fraction rule: −ba​=−ba​=−21​−43π​+−48πn​
−48πn​=−2πn
−48πn​
Apply the fraction rule: −ba​=−ba​=−48πn​
Divide the numbers: 48​=2=−2πn
=−21​−43π​−2πn
θ=−21​−43π​−2πn
θ=−21​−43π​−2πn
θ=−21​−43π​−2πn
θ=−2πn−21​+4π​,θ=−21​−43π​−2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

0=sin(x+c)7sin(2θ)-2sin(θ)=0cot(2x+pi/3)-sqrt(3)=0,-pi<x<picos^4(x)= 1/2tan(x)=tan(2x-30)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(θ+1)=cos(θ) ?

    The general solution for sin(θ+1)=cos(θ) is θ=-2pin-1/2+pi/4 ,θ=-1/2-(3pi)/4-2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024