Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)=tan(2x-30)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)=tan(2x−30)

Solution

x=−2πn+30,x=−π+30−2πn
+1
Degrees
x=1718.87338…∘−360∘n,x=1538.87338…∘−360∘n
Solution steps
tan(x)=tan(2x−30)
Subtract tan(2x−30) from both sidestan(x)−tan(2x−30)=0
Express with sin, cos
−tan(−30+2x)+tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(−30+2x)sin(−30+2x)​+tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(−30+2x)sin(−30+2x)​+cos(x)sin(x)​
Simplify −cos(−30+2x)sin(−30+2x)​+cos(x)sin(x)​:cos(2x−30)cos(x)−sin(−30+2x)cos(x)+sin(x)cos(2x−30)​
−cos(−30+2x)sin(−30+2x)​+cos(x)sin(x)​
Least Common Multiplier of cos(−30+2x),cos(x):cos(2x−30)cos(x)
cos(−30+2x),cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(−30+2x) or cos(x)=cos(2x−30)cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(2x−30)cos(x)
For cos(−30+2x)sin(−30+2x)​:multiply the denominator and numerator by cos(x)cos(−30+2x)sin(−30+2x)​=cos(−30+2x)cos(x)sin(−30+2x)cos(x)​
For cos(x)sin(x)​:multiply the denominator and numerator by cos(2x−30)cos(x)sin(x)​=cos(x)cos(2x−30)sin(x)cos(2x−30)​
=−cos(−30+2x)cos(x)sin(−30+2x)cos(x)​+cos(x)cos(2x−30)sin(x)cos(2x−30)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x−30)cos(x)−sin(−30+2x)cos(x)+sin(x)cos(2x−30)​
=cos(2x−30)cos(x)−sin(−30+2x)cos(x)+sin(x)cos(2x−30)​
cos(−30+2x)cos(x)cos(−30+2x)sin(x)−cos(x)sin(−30+2x)​=0
g(x)f(x)​=0⇒f(x)=0cos(−30+2x)sin(x)−cos(x)sin(−30+2x)=0
Rewrite using trig identities
cos(−30+2x)sin(x)−cos(x)sin(−30+2x)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(x−(−30+2x))
sin(x−(−30+2x))=0
General solutions for sin(x−(−30+2x))=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x−(−30+2x)=0+2πn,x−(−30+2x)=π+2πn
x−(−30+2x)=0+2πn,x−(−30+2x)=π+2πn
Solve x−(−30+2x)=0+2πn:x=−2πn+30
x−(−30+2x)=0+2πn
0+2πn=2πnx−(−30+2x)=2πn
Expand x−(−30+2x):−x+30
x−(−30+2x)
−(−30+2x):30−2x
−(−30+2x)
Distribute parentheses=−(−30)−(2x)
Apply minus-plus rules−(−a)=a,−(a)=−a=30−2x
=x+30−2x
Simplify x+30−2x:−x+30
x+30−2x
Group like terms=x−2x+30
Add similar elements: x−2x=−x=−x+30
=−x+30
−x+30=2πn
Move 30to the right side
−x+30=2πn
Subtract 30 from both sides−x+30−30=2πn−30
Simplify−x=2πn−30
−x=2πn−30
Divide both sides by −1
−x=2πn−30
Divide both sides by −1−1−x​=−12πn​−−130​
Simplify
−1−x​=−12πn​−−130​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −12πn​−−130​:−2πn+30
−12πn​−−130​
−12πn​=−2πn
−12πn​
Apply the fraction rule: −ba​=−ba​=−12πn​
Apply rule 1a​=a=−2πn
=−2πn−−130​
−130​=−30
−130​
Apply the fraction rule: −ba​=−ba​=−130​
Apply rule 1a​=a=−30
=−2πn−(−30)
Apply rule −(−a)=a=−2πn+30
x=−2πn+30
x=−2πn+30
x=−2πn+30
Solve x−(−30+2x)=π+2πn:x=−π+30−2πn
x−(−30+2x)=π+2πn
Expand x−(−30+2x):−x+30
x−(−30+2x)
−(−30+2x):30−2x
−(−30+2x)
Distribute parentheses=−(−30)−(2x)
Apply minus-plus rules−(−a)=a,−(a)=−a=30−2x
=x+30−2x
Simplify x+30−2x:−x+30
x+30−2x
Group like terms=x−2x+30
Add similar elements: x−2x=−x=−x+30
=−x+30
−x+30=π+2πn
Move 30to the right side
−x+30=π+2πn
Subtract 30 from both sides−x+30−30=π+2πn−30
Simplify−x=π+2πn−30
−x=π+2πn−30
Divide both sides by −1
−x=π+2πn−30
Divide both sides by −1−1−x​=−1π​+−12πn​−−130​
Simplify
−1−x​=−1π​+−12πn​−−130​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −1π​+−12πn​−−130​:−π+30−2πn
−1π​+−12πn​−−130​
Group like terms=−1π​−−130​+−12πn​
−1π​=−π
−1π​
Apply the fraction rule: −ba​=−ba​=−1π​
Apply rule 1a​=a=−π
=−π−−130​+−12πn​
−130​=−30
−130​
Apply the fraction rule: −ba​=−ba​=−130​
Apply rule 1a​=a=−30
−12πn​=−2πn
−12πn​
Apply the fraction rule: −ba​=−ba​=−12πn​
Apply rule 1a​=a=−2πn
=−π−(−30)−2πn
Apply rule −(−a)=a=−π+30−2πn
x=−π+30−2πn
x=−π+30−2πn
x=−π+30−2πn
x=−2πn+30,x=−π+30−2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(2)sin(x/2+pi/6)=1,x<4pi,016cos^2(x)-9=0cos(θ)=0.476sin(x)= 15/1912cos(x)+6sin(2x)=0,0<= x<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)=tan(2x-30) ?

    The general solution for tan(x)=tan(2x-30) is x=-2pin+30,x=-pi+30-2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024