解答
3.87sin(3652π(t+101.75))+11.7=14
解答
t=2π365⋅0.63641…+365n−101.75,t=2365−2π365⋅0.63641…+365n−101.75
+1
度数
t=−3711.60484…∘+20912.95952…∘n,t=2508.39347…∘+20912.95952…∘n求解步骤
3.87sin(3652π(t+101.75))+11.7=14
在两边乘以 100
3.87sin(3652π(t+101.75))+11.7=14
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1003.87sin(3652π(t+101.75))⋅100+11.7⋅100=14⋅100
整理后得387sin(3652π(t+101.75))+1170=1400
387sin(3652π(t+101.75))+1170=1400
将 1170到右边
387sin(3652π(t+101.75))+1170=1400
两边减去 1170387sin(3652π(t+101.75))+1170−1170=1400−1170
化简387sin(3652π(t+101.75))=230
387sin(3652π(t+101.75))=230
两边除以 387
387sin(3652π(t+101.75))=230
两边除以 387387387sin(3652π(t+101.75))=387230
化简sin(3652π(t+101.75))=387230
sin(3652π(t+101.75))=387230
使用反三角函数性质
sin(3652π(t+101.75))=387230
sin(3652π(t+101.75))=387230的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn3652π(t+101.75)=arcsin(387230)+2πn,3652π(t+101.75)=π−arcsin(387230)+2πn
3652π(t+101.75)=arcsin(387230)+2πn,3652π(t+101.75)=π−arcsin(387230)+2πn
解 3652π(t+101.75)=arcsin(387230)+2πn:t=2π365arcsin(387230)+365n−101.75
3652π(t+101.75)=arcsin(387230)+2πn
在两边乘以 365
3652π(t+101.75)=arcsin(387230)+2πn
在两边乘以 365365365⋅2π(t+101.75)=365arcsin(387230)+365⋅2πn
化简
365365⋅2π(t+101.75)=365arcsin(387230)+365⋅2πn
化简 365365⋅2π(t+101.75):2π(t+101.75)
365365⋅2π(t+101.75)
数字相乘:365⋅2=730=365730π(t+101.75)
数字相除:365730=2=2π(t+101.75)
化简 365arcsin(387230)+365⋅2πn:365arcsin(387230)+730πn
365arcsin(387230)+365⋅2πn
数字相乘:365⋅2=730=365arcsin(387230)+730πn
2π(t+101.75)=365arcsin(387230)+730πn
2π(t+101.75)=365arcsin(387230)+730πn
2π(t+101.75)=365arcsin(387230)+730πn
两边除以 2π
2π(t+101.75)=365arcsin(387230)+730πn
两边除以 2π2π2π(t+101.75)=2π365arcsin(387230)+2π730πn
化简
2π2π(t+101.75)=2π365arcsin(387230)+2π730πn
化简 2π2π(t+101.75):t+101.75
2π2π(t+101.75)
数字相除:22=1=ππ(t+101.75)
约分:π=t+101.75
化简 2π365arcsin(387230)+2π730πn:2π365arcsin(387230)+365n
2π365arcsin(387230)+2π730πn
消掉 2π730πn:365n
2π730πn
消掉 2π730πn:365n
2π730πn
数字相除:2730=365=π365πn
约分:π=365n
=365n
=2π365arcsin(387230)+365n
t+101.75=2π365arcsin(387230)+365n
t+101.75=2π365arcsin(387230)+365n
t+101.75=2π365arcsin(387230)+365n
将 101.75到右边
t+101.75=2π365arcsin(387230)+365n
两边减去 101.75t+101.75−101.75=2π365arcsin(387230)+365n−101.75
化简t=2π365arcsin(387230)+365n−101.75
t=2π365arcsin(387230)+365n−101.75
解 3652π(t+101.75)=π−arcsin(387230)+2πn:t=2365−2π365arcsin(387230)+365n−101.75
3652π(t+101.75)=π−arcsin(387230)+2πn
在两边乘以 365
3652π(t+101.75)=π−arcsin(387230)+2πn
在两边乘以 365365365⋅2π(t+101.75)=365π−365arcsin(387230)+365⋅2πn
化简
365365⋅2π(t+101.75)=365π−365arcsin(387230)+365⋅2πn
化简 365365⋅2π(t+101.75):2π(t+101.75)
365365⋅2π(t+101.75)
数字相乘:365⋅2=730=365730π(t+101.75)
数字相除:365730=2=2π(t+101.75)
化简 365π−365arcsin(387230)+365⋅2πn:365π−365arcsin(387230)+730πn
365π−365arcsin(387230)+365⋅2πn
数字相乘:365⋅2=730=365π−365arcsin(387230)+730πn
2π(t+101.75)=365π−365arcsin(387230)+730πn
2π(t+101.75)=365π−365arcsin(387230)+730πn
2π(t+101.75)=365π−365arcsin(387230)+730πn
两边除以 2π
2π(t+101.75)=365π−365arcsin(387230)+730πn
两边除以 2π2π2π(t+101.75)=2π365π−2π365arcsin(387230)+2π730πn
化简
2π2π(t+101.75)=2π365π−2π365arcsin(387230)+2π730πn
化简 2π2π(t+101.75):t+101.75
2π2π(t+101.75)
数字相除:22=1=ππ(t+101.75)
约分:π=t+101.75
化简 2π365π−2π365arcsin(387230)+2π730πn:2365−2π365arcsin(387230)+365n
2π365π−2π365arcsin(387230)+2π730πn
消掉 2π365π:2365
2π365π
约分:π=2365
=2365−2π365arcsin(387230)+2π730πn
消掉 2π730πn:365n
2π730πn
消掉 2π730πn:365n
2π730πn
数字相除:2730=365=π365πn
约分:π=365n
=365n
=2365−2π365arcsin(387230)+365n
t+101.75=2365−2π365arcsin(387230)+365n
t+101.75=2365−2π365arcsin(387230)+365n
t+101.75=2365−2π365arcsin(387230)+365n
将 101.75到右边
t+101.75=2365−2π365arcsin(387230)+365n
两边减去 101.75t+101.75−101.75=2365−2π365arcsin(387230)+365n−101.75
化简t=2365−2π365arcsin(387230)+365n−101.75
t=2365−2π365arcsin(387230)+365n−101.75
t=2π365arcsin(387230)+365n−101.75,t=2365−2π365arcsin(387230)+365n−101.75
以小数形式表示解t=2π365⋅0.63641…+365n−101.75,t=2365−2π365⋅0.63641…+365n−101.75