Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cosh(2x)+sinh^2(x)-13sinh(x)=-3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cosh(2x)+sinh2(x)−13sinh(x)=−3

Solution

x=ln(1.38742…),x=ln(8.12310…)
+1
Degrees
x=18.76151…∘,x=120.01818…∘
Solution steps
cosh(2x)+sinh2(x)−13sinh(x)=−3
Rewrite using trig identities
cosh(2x)+sinh2(x)−13sinh(x)=−3
Use the Hyperbolic identity: sinh(x)=2ex−e−x​cosh(2x)+(2ex−e−x​)2−13⋅2ex−e−x​=−3
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3
2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3
2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3:x=ln(1.38742…),x=ln(8.12310…)
2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3
Multiply both sides by 22e2x+e−2x​⋅2+(2ex−e−x​)2⋅2−13⋅2ex−e−x​⋅2=−3⋅2
Simplify 2e2x+e−2x​⋅2+(2ex−e−x​)2⋅2−13⋅2ex−e−x​⋅2:e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)
2e2x+e−2x​⋅2+(2ex−e−x​)2⋅2−13⋅2ex−e−x​⋅2
2e2x+e−2x​⋅2=e2x+e−2x
2e2x+e−2x​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=2(e2x+e−2x)⋅2​
Cancel the common factor: 2=e2x+e−2x
(2ex−e−x​)2⋅2=2(ex−e−x)2​
(2ex−e−x​)2⋅2
(2ex−e−x​)2=22(ex−e−x)2​
(2ex−e−x​)2
Apply exponent rule: (ba​)c=bcac​=22(ex−e−x)2​
=2⋅22(ex−e−x)2​
Multiply fractions: a⋅cb​=ca⋅b​=22(ex−e−x)2⋅2​
Cancel the common factor: 2=2(ex−e−x)2​
13⋅2ex−e−x​⋅2=13(ex−e−x)
13⋅2ex−e−x​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=2(ex−e−x)⋅13⋅2​
Cancel the common factor: 2=(ex−e−x)⋅13
=e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)
e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)=−6
Apply exponent rules
e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)=−6
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−2,e−x=(ex)−1(ex)2+(ex)−2+2(ex−(ex)−1)2​−13(ex−(ex)−1)=−6
(ex)2+(ex)−2+2(ex−(ex)−1)2​−13(ex−(ex)−1)=−6
Rewrite the equation with ex=u(u)2+(u)−2+2(u−(u)−1)2​−13(u−(u)−1)=−6
Solve u2+u−2+2(u−u−1)2​−13(u−u−1)=−6:u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
u2+u−2+2(u−u−1)2​−13(u−u−1)=−6
Refineu2+u21​+2u2(u2−1)2​−13(u−u1​)=−6
Multiply by LCM
u2+u21​+2u2(u2−1)2​−13(u−u1​)=−6
Find Least Common Multiplier of u2,2u2:2u2
u2,2u2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u2 or 2u2=2u2
Multiply by LCM=2u2u2⋅2u2+u21​⋅2u2+2u2(u2−1)2​⋅2u2−13(u−u1​)⋅2u2=−6⋅2u2
Simplify
u2⋅2u2+u21​⋅2u2+2u2(u2−1)2​⋅2u2−13(u−u1​)⋅2u2=−6⋅2u2
Simplify u2⋅2u2:2u4
u2⋅2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=2u2+2
Add the numbers: 2+2=4=2u4
Simplify u21​⋅2u2:2
u21​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅2u2​
Cancel the common factor: u2=1⋅2
Multiply the numbers: 1⋅2=2=2
Simplify 2u2(u2−1)2​⋅2u2:(u2−1)2
2u2(u2−1)2​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=2u2(u2−1)2⋅2u2​
Cancel the common factor: 2=u2(u2−1)2u2​
Cancel the common factor: u2=(u2−1)2
Simplify −13(u−u1​)⋅2u2:−26u2(u−u1​)
−13(u−u1​)⋅2u2
Multiply the numbers: 13⋅2=26=−26u2(u−u1​)
Simplify −6⋅2u2:−12u2
−6⋅2u2
Multiply the numbers: 6⋅2=12=−12u2
2u4+2+(u2−1)2−26u2(u−u1​)=−12u2
2u4+2+(u2−1)2−26u2(u−u1​)=−12u2
Expand 2u4+2+(u2−1)2−26u2(u−u1​):3u4−26u3−2u2+26u+3
2u4+2+(u2−1)2−26u2(u−u1​)
(u2−1)2:u4−2u2+1
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=u2,b=1
=(u2)2−2u2⋅1+12
Simplify (u2)2−2u2⋅1+12:u4−2u2+1
(u2)2−2u2⋅1+12
Apply rule 1a=112=1=(u2)2−2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4−2u2+1
=u4−2u2+1
=2u4+2+u4−2u2+1−26u2(u−u1​)
Expand −26u2(u−u1​):−26u3+26u
−26u2(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=−26u2,b=u,c=u1​=−26u2u−(−26u2)u1​
Apply minus-plus rules−(−a)=a=−26u2u+26⋅u1​u2
Simplify −26u2u+26⋅u1​u2:−26u3+26u
−26u2u+26⋅u1​u2
26u2u=26u3
26u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=26u2+1
Add the numbers: 2+1=3=26u3
26⋅u1​u2=26u
26⋅u1​u2
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅26u2​
Multiply the numbers: 1⋅26=26=u26u2​
Cancel the common factor: u=26u
=−26u3+26u
=−26u3+26u
=2u4+2+u4−2u2+1−26u3+26u
Simplify 2u4+2+u4−2u2+1−26u3+26u:3u4−26u3−2u2+26u+3
2u4+2+u4−2u2+1−26u3+26u
Group like terms=2u4+u4−26u3−2u2+26u+2+1
Add similar elements: 2u4+u4=3u4=3u4−26u3−2u2+26u+2+1
Add the numbers: 2+1=3=3u4−26u3−2u2+26u+3
=3u4−26u3−2u2+26u+3
3u4−26u3−2u2+26u+3=−12u2
3u4−26u3−2u2+26u+3=−12u2
Solve 3u4−26u3−2u2+26u+3=−12u2:u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
3u4−26u3−2u2+26u+3=−12u2
Move 12u2to the left side
3u4−26u3−2u2+26u+3=−12u2
Add 12u2 to both sides3u4−26u3−2u2+26u+3+12u2=−12u2+12u2
Simplify3u4−26u3+10u2+26u+3=0
3u4−26u3+10u2+26u+3=0
Find one solution for 3u4−26u3+10u2+26u+3=0 using Newton-Raphson:u≈−0.12310…
3u4−26u3+10u2+26u+3=0
Newton-Raphson Approximation Definition
f(u)=3u4−26u3+10u2+26u+3
Find f′(u):12u3−78u2+20u+26
dud​(3u4−26u3+10u2+26u+3)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u4)−dud​(26u3)+dud​(10u2)+dud​(26u)+dud​(3)
dud​(3u4)=12u3
dud​(3u4)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅4u4−1
Simplify=12u3
dud​(26u3)=78u2
dud​(26u3)
Take the constant out: (a⋅f)′=a⋅f′=26dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=26⋅3u3−1
Simplify=78u2
dud​(10u2)=20u
dud​(10u2)
Take the constant out: (a⋅f)′=a⋅f′=10dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=10⋅2u2−1
Simplify=20u
dud​(26u)=26
dud​(26u)
Take the constant out: (a⋅f)′=a⋅f′=26dudu​
Apply the common derivative: dudu​=1=26⋅1
Simplify=26
dud​(3)=0
dud​(3)
Derivative of a constant: dxd​(a)=0=0
=12u3−78u2+20u+26+0
Simplify=12u3−78u2+20u+26
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.11538…:Δu1​=0.11538…
f(u0​)=3⋅04−26⋅03+10⋅02+26⋅0+3=3f′(u0​)=12⋅03−78⋅02+20⋅0+26=26u1​=−0.11538…
Δu1​=∣−0.11538…−0∣=0.11538…Δu1​=0.11538…
u2​=−0.12305…:Δu2​=0.00766…
f(u1​)=3(−0.11538…)4−26(−0.11538…)3+10(−0.11538…)2+26(−0.11538…)+3=0.17360…f′(u1​)=12(−0.11538…)3−78(−0.11538…)2+20(−0.11538…)+26=22.63541…u2​=−0.12305…
Δu2​=∣−0.12305…−(−0.11538…)∣=0.00766…Δu2​=0.00766…
u3​=−0.12310…:Δu3​=0.00005…
f(u2​)=3(−0.12305…)4−26(−0.12305…)3+10(−0.12305…)2+26(−0.12305…)+3=0.00114…f′(u2​)=12(−0.12305…)3−78(−0.12305…)2+20(−0.12305…)+26=22.33544…u3​=−0.12310…
Δu3​=∣−0.12310…−(−0.12305…)∣=0.00005…Δu3​=0.00005…
u4​=−0.12310…:Δu4​=2.33489E−9
f(u3​)=3(−0.12310…)4−26(−0.12310…)3+10(−0.12310…)2+26(−0.12310…)+3=5.21461E−8f′(u3​)=12(−0.12310…)3−78(−0.12310…)2+20(−0.12310…)+26=22.33340…u4​=−0.12310…
Δu4​=∣−0.12310…−(−0.12310…)∣=2.33489E−9Δu4​=2.33489E−9
u≈−0.12310…
Apply long division:u+0.12310…3u4−26u3+10u2+26u+3​=3u3−26.36931…u2+13.24621…u+24.36931…
3u3−26.36931…u2+13.24621…u+24.36931…≈0
Find one solution for 3u3−26.36931…u2+13.24621…u+24.36931…=0 using Newton-Raphson:u≈−0.72075…
3u3−26.36931…u2+13.24621…u+24.36931…=0
Newton-Raphson Approximation Definition
f(u)=3u3−26.36931…u2+13.24621…u+24.36931…
Find f′(u):9u2−52.73863…u+13.24621…
dud​(3u3−26.36931…u2+13.24621…u+24.36931…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u3)−dud​(26.36931…u2)+dud​(13.24621…u)+dud​(24.36931…)
dud​(3u3)=9u2
dud​(3u3)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅3u3−1
Simplify=9u2
dud​(26.36931…u2)=52.73863…u
dud​(26.36931…u2)
Take the constant out: (a⋅f)′=a⋅f′=26.36931…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=26.36931…⋅2u2−1
Simplify=52.73863…u
dud​(13.24621…u)=13.24621…
dud​(13.24621…u)
Take the constant out: (a⋅f)′=a⋅f′=13.24621…dudu​
Apply the common derivative: dudu​=1=13.24621…⋅1
Simplify=13.24621…
dud​(24.36931…)=0
dud​(24.36931…)
Derivative of a constant: dxd​(a)=0=0
=9u2−52.73863…u+13.24621…+0
Simplify=9u2−52.73863…u+13.24621…
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−1.14944…:Δu1​=0.85055…
f(u0​)=3(−2)3−26.36931…(−2)2+13.24621…(−2)+24.36931…=−131.60037…f′(u0​)=9(−2)2−52.73863…(−2)+13.24621…=154.72347…u1​=−1.14944…
Δu1​=∣−1.14944…−(−2)∣=0.85055…Δu1​=0.85055…
u2​=−0.79668…:Δu2​=0.35276…
f(u1​)=3(−1.14944…)3−26.36931…(−1.14944…)2+13.24621…(−1.14944…)+24.36931…=−30.25251…f′(u1​)=9(−1.14944…)2−52.73863…(−1.14944…)+13.24621…=85.75760…u2​=−0.79668…
Δu2​=∣−0.79668…−(−1.14944…)∣=0.35276…Δu2​=0.35276…
u3​=−0.72390…:Δu3​=0.07277…
f(u2​)=3(−0.79668…)3−26.36931…(−0.79668…)2+13.24621…(−0.79668…)+24.36931…=−4.43722…f′(u2​)=9(−0.79668…)2−52.73863…(−0.79668…)+13.24621…=60.97432…u3​=−0.72390…
Δu3​=∣−0.72390…−(−0.79668…)∣=0.07277…Δu3​=0.07277…
u4​=−0.72076…:Δu4​=0.00314…
f(u3​)=3(−0.72390…)3−26.36931…(−0.72390…)2+13.24621…(−0.72390…)+24.36931…=−0.17646…f′(u3​)=9(−0.72390…)2−52.73863…(−0.72390…)+13.24621…=56.14052…u4​=−0.72076…
Δu4​=∣−0.72076…−(−0.72390…)∣=0.00314…Δu4​=0.00314…
u5​=−0.72075…:Δu5​=5.80676E−6
f(u4​)=3(−0.72076…)3−26.36931…(−0.72076…)2+13.24621…(−0.72076…)+24.36931…=−0.00032…f′(u4​)=9(−0.72076…)2−52.73863…(−0.72076…)+13.24621…=55.93389…u5​=−0.72075…
Δu5​=∣−0.72075…−(−0.72076…)∣=5.80676E−6Δu5​=5.80676E−6
u6​=−0.72075…:Δu6​=1.98067E−11
f(u5​)=3(−0.72075…)3−26.36931…(−0.72075…)2+13.24621…(−0.72075…)+24.36931…=−1.10786E−9f′(u5​)=9(−0.72075…)2−52.73863…(−0.72075…)+13.24621…=55.93351…u6​=−0.72075…
Δu6​=∣−0.72075…−(−0.72075…)∣=1.98067E−11Δu6​=1.98067E−11
u≈−0.72075…
Apply long division:u+0.72075…3u3−26.36931…u2+13.24621…u+24.36931…​=3u2−28.53159…u+33.81062…
3u2−28.53159…u+33.81062…≈0
Find one solution for 3u2−28.53159…u+33.81062…=0 using Newton-Raphson:u≈1.38742…
3u2−28.53159…u+33.81062…=0
Newton-Raphson Approximation Definition
f(u)=3u2−28.53159…u+33.81062…
Find f′(u):6u−28.53159…
dud​(3u2−28.53159…u+33.81062…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u2)−dud​(28.53159…u)+dud​(33.81062…)
dud​(3u2)=6u
dud​(3u2)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅2u2−1
Simplify=6u
dud​(28.53159…u)=28.53159…
dud​(28.53159…u)
Take the constant out: (a⋅f)′=a⋅f′=28.53159…dudu​
Apply the common derivative: dudu​=1=28.53159…⋅1
Simplify=28.53159…
dud​(33.81062…)=0
dud​(33.81062…)
Derivative of a constant: dxd​(a)=0=0
=6u−28.53159…+0
Simplify=6u−28.53159…
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=1.36744…:Δu1​=0.36744…
f(u0​)=3⋅12−28.53159…⋅1+33.81062…=8.27902…f′(u0​)=6⋅1−28.53159…=−22.53159…u1​=1.36744…
Δu1​=∣1.36744…−1∣=0.36744…Δu1​=0.36744…
u2​=1.38736…:Δu2​=0.01992…
f(u1​)=3⋅1.36744…2−28.53159…⋅1.36744…+33.81062…=0.40503…f′(u1​)=6⋅1.36744…−28.53159…=−20.32694…u2​=1.38736…
Δu2​=∣1.38736…−1.36744…∣=0.01992…Δu2​=0.01992…
u3​=1.38742…:Δu3​=0.00005…
f(u2​)=3⋅1.38736…2−28.53159…⋅1.38736…+33.81062…=0.00119…f′(u2​)=6⋅1.38736…−28.53159…=−20.20739…u3​=1.38742…
Δu3​=∣1.38742…−1.38736…∣=0.00005…Δu3​=0.00005…
u4​=1.38742…:Δu4​=5.15864E−10
f(u3​)=3⋅1.38742…2−28.53159…⋅1.38742…+33.81062…=1.04241E−8f′(u3​)=6⋅1.38742…−28.53159…=−20.20703…u4​=1.38742…
Δu4​=∣1.38742…−1.38742…∣=5.15864E−10Δu4​=5.15864E−10
u≈1.38742…
Apply long division:u−1.38742…3u2−28.53159…u+33.81062…​=3u−24.36931…
3u−24.36931…≈0
u≈8.12310…
The solutions areu≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u2+u−2+2(u−u−1)2​−13(u−u−1) and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
Substitute back u=ex,solve for x
Solve ex=−0.12310…:No Solution for x∈R
ex=−0.12310…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=−0.72075…:No Solution for x∈R
ex=−0.72075…
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=1.38742…:x=ln(1.38742…)
ex=1.38742…
Apply exponent rules
ex=1.38742…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1.38742…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1.38742…)
x=ln(1.38742…)
Solve ex=8.12310…:x=ln(8.12310…)
ex=8.12310…
Apply exponent rules
ex=8.12310…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(8.12310…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(8.12310…)
x=ln(8.12310…)
x=ln(1.38742…),x=ln(8.12310…)
x=ln(1.38742…),x=ln(8.12310…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(3x-pi/4)=1(1-tan^2(A))/(1+tan^2(A))=1sin(2x)-0.8=0tan(a)=sqrt(15/7),sin(a)2cos^2(θ)+sin(θ)=2

Frequently Asked Questions (FAQ)

  • What is the general solution for cosh(2x)+sinh^2(x)-13sinh(x)=-3 ?

    The general solution for cosh(2x)+sinh^2(x)-13sinh(x)=-3 is x=ln(1.38742…),x=ln(8.12310…)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024