解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
AI Chat
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 三角函数 >

cosh(2x)+sinh^2(x)-13sinh(x)=-3

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

cosh(2x)+sinh2(x)−13sinh(x)=−3

解答

x=ln(1.38742…),x=ln(8.12310…)
+1
度数
x=18.76151…∘,x=120.01818…∘
求解步骤
cosh(2x)+sinh2(x)−13sinh(x)=−3
使用三角恒等式改写
cosh(2x)+sinh2(x)−13sinh(x)=−3
使用双曲函数恒等式: sinh(x)=2ex−e−x​cosh(2x)+(2ex−e−x​)2−13⋅2ex−e−x​=−3
使用双曲函数恒等式: cosh(x)=2ex+e−x​2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3
2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3
2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3:x=ln(1.38742…),x=ln(8.12310…)
2e2x+e−2x​+(2ex−e−x​)2−13⋅2ex−e−x​=−3
在两边乘以 22e2x+e−2x​⋅2+(2ex−e−x​)2⋅2−13⋅2ex−e−x​⋅2=−3⋅2
化简 2e2x+e−2x​⋅2+(2ex−e−x​)2⋅2−13⋅2ex−e−x​⋅2:e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)
2e2x+e−2x​⋅2+(2ex−e−x​)2⋅2−13⋅2ex−e−x​⋅2
2e2x+e−2x​⋅2=e2x+e−2x
2e2x+e−2x​⋅2
分式相乘: a⋅cb​=ca⋅b​=2(e2x+e−2x)⋅2​
约分:2=e2x+e−2x
(2ex−e−x​)2⋅2=2(ex−e−x)2​
(2ex−e−x​)2⋅2
(2ex−e−x​)2=22(ex−e−x)2​
(2ex−e−x​)2
使用指数法则: (ba​)c=bcac​=22(ex−e−x)2​
=2⋅22(ex−e−x)2​
分式相乘: a⋅cb​=ca⋅b​=22(ex−e−x)2⋅2​
约分:2=2(ex−e−x)2​
13⋅2ex−e−x​⋅2=13(ex−e−x)
13⋅2ex−e−x​⋅2
分式相乘: a⋅cb​=ca⋅b​=2(ex−e−x)⋅13⋅2​
约分:2=(ex−e−x)⋅13
=e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)
e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)=−6
使用指数运算法则
e2x+e−2x+2(ex−e−x)2​−13(ex−e−x)=−6
使用指数法则: abc=(ab)ce2x=(ex)2,e−2x=(ex)−2,e−x=(ex)−1(ex)2+(ex)−2+2(ex−(ex)−1)2​−13(ex−(ex)−1)=−6
(ex)2+(ex)−2+2(ex−(ex)−1)2​−13(ex−(ex)−1)=−6
用ex=u 改写方程式(u)2+(u)−2+2(u−(u)−1)2​−13(u−(u)−1)=−6
解 u2+u−2+2(u−u−1)2​−13(u−u−1)=−6:u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
u2+u−2+2(u−u−1)2​−13(u−u−1)=−6
整理后得u2+u21​+2u2(u2−1)2​−13(u−u1​)=−6
乘以最小公倍数
u2+u21​+2u2(u2−1)2​−13(u−u1​)=−6
找到 u2,2u2 的最小公倍数:2u2
u2,2u2
最小公倍数 (LCM)
计算出由出现在 u2 或 2u2中的因子组成的表达式=2u2
乘以最小公倍数=2u2u2⋅2u2+u21​⋅2u2+2u2(u2−1)2​⋅2u2−13(u−u1​)⋅2u2=−6⋅2u2
化简
u2⋅2u2+u21​⋅2u2+2u2(u2−1)2​⋅2u2−13(u−u1​)⋅2u2=−6⋅2u2
化简 u2⋅2u2:2u4
u2⋅2u2
使用指数法则: ab⋅ac=ab+cu2u2=u2+2=2u2+2
数字相加:2+2=4=2u4
化简 u21​⋅2u2:2
u21​⋅2u2
分式相乘: a⋅cb​=ca⋅b​=u21⋅2u2​
约分:u2=1⋅2
数字相乘:1⋅2=2=2
化简 2u2(u2−1)2​⋅2u2:(u2−1)2
2u2(u2−1)2​⋅2u2
分式相乘: a⋅cb​=ca⋅b​=2u2(u2−1)2⋅2u2​
约分:2=u2(u2−1)2u2​
约分:u2=(u2−1)2
化简 −13(u−u1​)⋅2u2:−26u2(u−u1​)
−13(u−u1​)⋅2u2
数字相乘:13⋅2=26=−26u2(u−u1​)
化简 −6⋅2u2:−12u2
−6⋅2u2
数字相乘:6⋅2=12=−12u2
2u4+2+(u2−1)2−26u2(u−u1​)=−12u2
2u4+2+(u2−1)2−26u2(u−u1​)=−12u2
展开 2u4+2+(u2−1)2−26u2(u−u1​):3u4−26u3−2u2+26u+3
2u4+2+(u2−1)2−26u2(u−u1​)
(u2−1)2:u4−2u2+1
使用完全平方公式: (a−b)2=a2−2ab+b2a=u2,b=1
=(u2)2−2u2⋅1+12
化简 (u2)2−2u2⋅1+12:u4−2u2+1
(u2)2−2u2⋅1+12
使用法则 1a=112=1=(u2)2−2⋅1⋅u2+1
(u2)2=u4
(u2)2
使用指数法则: (ab)c=abc=u2⋅2
数字相乘:2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
数字相乘:2⋅1=2=2u2
=u4−2u2+1
=u4−2u2+1
=2u4+2+u4−2u2+1−26u2(u−u1​)
乘开 −26u2(u−u1​):−26u3+26u
−26u2(u−u1​)
使用分配律: a(b−c)=ab−aca=−26u2,b=u,c=u1​=−26u2u−(−26u2)u1​
使用加减运算法则−(−a)=a=−26u2u+26⋅u1​u2
化简 −26u2u+26⋅u1​u2:−26u3+26u
−26u2u+26⋅u1​u2
26u2u=26u3
26u2u
使用指数法则: ab⋅ac=ab+cu2u=u2+1=26u2+1
数字相加:2+1=3=26u3
26⋅u1​u2=26u
26⋅u1​u2
分式相乘: a⋅cb​=ca⋅b​=u1⋅26u2​
数字相乘:1⋅26=26=u26u2​
约分:u=26u
=−26u3+26u
=−26u3+26u
=2u4+2+u4−2u2+1−26u3+26u
化简 2u4+2+u4−2u2+1−26u3+26u:3u4−26u3−2u2+26u+3
2u4+2+u4−2u2+1−26u3+26u
对同类项分组=2u4+u4−26u3−2u2+26u+2+1
同类项相加:2u4+u4=3u4=3u4−26u3−2u2+26u+2+1
数字相加:2+1=3=3u4−26u3−2u2+26u+3
=3u4−26u3−2u2+26u+3
3u4−26u3−2u2+26u+3=−12u2
3u4−26u3−2u2+26u+3=−12u2
解 3u4−26u3−2u2+26u+3=−12u2:u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
3u4−26u3−2u2+26u+3=−12u2
将 12u2para o lado esquerdo
3u4−26u3−2u2+26u+3=−12u2
两边加上 12u23u4−26u3−2u2+26u+3+12u2=−12u2+12u2
化简3u4−26u3+10u2+26u+3=0
3u4−26u3+10u2+26u+3=0
使用牛顿-拉弗森方法找到 3u4−26u3+10u2+26u+3=0 的一个解:u≈−0.12310…
3u4−26u3+10u2+26u+3=0
牛顿-拉弗森近似法定义
f(u)=3u4−26u3+10u2+26u+3
找到 f′(u):12u3−78u2+20u+26
dud​(3u4−26u3+10u2+26u+3)
使用微分加减法定则: (f±g)′=f′±g′=dud​(3u4)−dud​(26u3)+dud​(10u2)+dud​(26u)+dud​(3)
dud​(3u4)=12u3
dud​(3u4)
将常数提出: (a⋅f)′=a⋅f′=3dud​(u4)
使用幂法则: dxd​(xa)=a⋅xa−1=3⋅4u4−1
化简=12u3
dud​(26u3)=78u2
dud​(26u3)
将常数提出: (a⋅f)′=a⋅f′=26dud​(u3)
使用幂法则: dxd​(xa)=a⋅xa−1=26⋅3u3−1
化简=78u2
dud​(10u2)=20u
dud​(10u2)
将常数提出: (a⋅f)′=a⋅f′=10dud​(u2)
使用幂法则: dxd​(xa)=a⋅xa−1=10⋅2u2−1
化简=20u
dud​(26u)=26
dud​(26u)
将常数提出: (a⋅f)′=a⋅f′=26dudu​
使用常见微分定则: dudu​=1=26⋅1
化简=26
dud​(3)=0
dud​(3)
常数微分: dxd​(a)=0=0
=12u3−78u2+20u+26+0
化简=12u3−78u2+20u+26
令 u0​=0计算 un+1​ 至 Δun+1​<0.000001
u1​=−0.11538…:Δu1​=0.11538…
f(u0​)=3⋅04−26⋅03+10⋅02+26⋅0+3=3f′(u0​)=12⋅03−78⋅02+20⋅0+26=26u1​=−0.11538…
Δu1​=∣−0.11538…−0∣=0.11538…Δu1​=0.11538…
u2​=−0.12305…:Δu2​=0.00766…
f(u1​)=3(−0.11538…)4−26(−0.11538…)3+10(−0.11538…)2+26(−0.11538…)+3=0.17360…f′(u1​)=12(−0.11538…)3−78(−0.11538…)2+20(−0.11538…)+26=22.63541…u2​=−0.12305…
Δu2​=∣−0.12305…−(−0.11538…)∣=0.00766…Δu2​=0.00766…
u3​=−0.12310…:Δu3​=0.00005…
f(u2​)=3(−0.12305…)4−26(−0.12305…)3+10(−0.12305…)2+26(−0.12305…)+3=0.00114…f′(u2​)=12(−0.12305…)3−78(−0.12305…)2+20(−0.12305…)+26=22.33544…u3​=−0.12310…
Δu3​=∣−0.12310…−(−0.12305…)∣=0.00005…Δu3​=0.00005…
u4​=−0.12310…:Δu4​=2.33489E−9
f(u3​)=3(−0.12310…)4−26(−0.12310…)3+10(−0.12310…)2+26(−0.12310…)+3=5.21461E−8f′(u3​)=12(−0.12310…)3−78(−0.12310…)2+20(−0.12310…)+26=22.33340…u4​=−0.12310…
Δu4​=∣−0.12310…−(−0.12310…)∣=2.33489E−9Δu4​=2.33489E−9
u≈−0.12310…
使用长除法 Equation0:u+0.12310…3u4−26u3+10u2+26u+3​=3u3−26.36931…u2+13.24621…u+24.36931…
3u3−26.36931…u2+13.24621…u+24.36931…≈0
使用牛顿-拉弗森方法找到 3u3−26.36931…u2+13.24621…u+24.36931…=0 的一个解:u≈−0.72075…
3u3−26.36931…u2+13.24621…u+24.36931…=0
牛顿-拉弗森近似法定义
f(u)=3u3−26.36931…u2+13.24621…u+24.36931…
找到 f′(u):9u2−52.73863…u+13.24621…
dud​(3u3−26.36931…u2+13.24621…u+24.36931…)
使用微分加减法定则: (f±g)′=f′±g′=dud​(3u3)−dud​(26.36931…u2)+dud​(13.24621…u)+dud​(24.36931…)
dud​(3u3)=9u2
dud​(3u3)
将常数提出: (a⋅f)′=a⋅f′=3dud​(u3)
使用幂法则: dxd​(xa)=a⋅xa−1=3⋅3u3−1
化简=9u2
dud​(26.36931…u2)=52.73863…u
dud​(26.36931…u2)
将常数提出: (a⋅f)′=a⋅f′=26.36931…dud​(u2)
使用幂法则: dxd​(xa)=a⋅xa−1=26.36931…⋅2u2−1
化简=52.73863…u
dud​(13.24621…u)=13.24621…
dud​(13.24621…u)
将常数提出: (a⋅f)′=a⋅f′=13.24621…dudu​
使用常见微分定则: dudu​=1=13.24621…⋅1
化简=13.24621…
dud​(24.36931…)=0
dud​(24.36931…)
常数微分: dxd​(a)=0=0
=9u2−52.73863…u+13.24621…+0
化简=9u2−52.73863…u+13.24621…
令 u0​=−2计算 un+1​ 至 Δun+1​<0.000001
u1​=−1.14944…:Δu1​=0.85055…
f(u0​)=3(−2)3−26.36931…(−2)2+13.24621…(−2)+24.36931…=−131.60037…f′(u0​)=9(−2)2−52.73863…(−2)+13.24621…=154.72347…u1​=−1.14944…
Δu1​=∣−1.14944…−(−2)∣=0.85055…Δu1​=0.85055…
u2​=−0.79668…:Δu2​=0.35276…
f(u1​)=3(−1.14944…)3−26.36931…(−1.14944…)2+13.24621…(−1.14944…)+24.36931…=−30.25251…f′(u1​)=9(−1.14944…)2−52.73863…(−1.14944…)+13.24621…=85.75760…u2​=−0.79668…
Δu2​=∣−0.79668…−(−1.14944…)∣=0.35276…Δu2​=0.35276…
u3​=−0.72390…:Δu3​=0.07277…
f(u2​)=3(−0.79668…)3−26.36931…(−0.79668…)2+13.24621…(−0.79668…)+24.36931…=−4.43722…f′(u2​)=9(−0.79668…)2−52.73863…(−0.79668…)+13.24621…=60.97432…u3​=−0.72390…
Δu3​=∣−0.72390…−(−0.79668…)∣=0.07277…Δu3​=0.07277…
u4​=−0.72076…:Δu4​=0.00314…
f(u3​)=3(−0.72390…)3−26.36931…(−0.72390…)2+13.24621…(−0.72390…)+24.36931…=−0.17646…f′(u3​)=9(−0.72390…)2−52.73863…(−0.72390…)+13.24621…=56.14052…u4​=−0.72076…
Δu4​=∣−0.72076…−(−0.72390…)∣=0.00314…Δu4​=0.00314…
u5​=−0.72075…:Δu5​=5.80676E−6
f(u4​)=3(−0.72076…)3−26.36931…(−0.72076…)2+13.24621…(−0.72076…)+24.36931…=−0.00032…f′(u4​)=9(−0.72076…)2−52.73863…(−0.72076…)+13.24621…=55.93389…u5​=−0.72075…
Δu5​=∣−0.72075…−(−0.72076…)∣=5.80676E−6Δu5​=5.80676E−6
u6​=−0.72075…:Δu6​=1.98067E−11
f(u5​)=3(−0.72075…)3−26.36931…(−0.72075…)2+13.24621…(−0.72075…)+24.36931…=−1.10786E−9f′(u5​)=9(−0.72075…)2−52.73863…(−0.72075…)+13.24621…=55.93351…u6​=−0.72075…
Δu6​=∣−0.72075…−(−0.72075…)∣=1.98067E−11Δu6​=1.98067E−11
u≈−0.72075…
使用长除法 Equation0:u+0.72075…3u3−26.36931…u2+13.24621…u+24.36931…​=3u2−28.53159…u+33.81062…
3u2−28.53159…u+33.81062…≈0
使用牛顿-拉弗森方法找到 3u2−28.53159…u+33.81062…=0 的一个解:u≈1.38742…
3u2−28.53159…u+33.81062…=0
牛顿-拉弗森近似法定义
f(u)=3u2−28.53159…u+33.81062…
找到 f′(u):6u−28.53159…
dud​(3u2−28.53159…u+33.81062…)
使用微分加减法定则: (f±g)′=f′±g′=dud​(3u2)−dud​(28.53159…u)+dud​(33.81062…)
dud​(3u2)=6u
dud​(3u2)
将常数提出: (a⋅f)′=a⋅f′=3dud​(u2)
使用幂法则: dxd​(xa)=a⋅xa−1=3⋅2u2−1
化简=6u
dud​(28.53159…u)=28.53159…
dud​(28.53159…u)
将常数提出: (a⋅f)′=a⋅f′=28.53159…dudu​
使用常见微分定则: dudu​=1=28.53159…⋅1
化简=28.53159…
dud​(33.81062…)=0
dud​(33.81062…)
常数微分: dxd​(a)=0=0
=6u−28.53159…+0
化简=6u−28.53159…
令 u0​=1计算 un+1​ 至 Δun+1​<0.000001
u1​=1.36744…:Δu1​=0.36744…
f(u0​)=3⋅12−28.53159…⋅1+33.81062…=8.27902…f′(u0​)=6⋅1−28.53159…=−22.53159…u1​=1.36744…
Δu1​=∣1.36744…−1∣=0.36744…Δu1​=0.36744…
u2​=1.38736…:Δu2​=0.01992…
f(u1​)=3⋅1.36744…2−28.53159…⋅1.36744…+33.81062…=0.40503…f′(u1​)=6⋅1.36744…−28.53159…=−20.32694…u2​=1.38736…
Δu2​=∣1.38736…−1.36744…∣=0.01992…Δu2​=0.01992…
u3​=1.38742…:Δu3​=0.00005…
f(u2​)=3⋅1.38736…2−28.53159…⋅1.38736…+33.81062…=0.00119…f′(u2​)=6⋅1.38736…−28.53159…=−20.20739…u3​=1.38742…
Δu3​=∣1.38742…−1.38736…∣=0.00005…Δu3​=0.00005…
u4​=1.38742…:Δu4​=5.15864E−10
f(u3​)=3⋅1.38742…2−28.53159…⋅1.38742…+33.81062…=1.04241E−8f′(u3​)=6⋅1.38742…−28.53159…=−20.20703…u4​=1.38742…
Δu4​=∣1.38742…−1.38742…∣=5.15864E−10Δu4​=5.15864E−10
u≈1.38742…
使用长除法 Equation0:u−1.38742…3u2−28.53159…u+33.81062…​=3u−24.36931…
3u−24.36931…≈0
u≈8.12310…
解为u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
验证解
找到无定义的点(奇点):u=0
取 u2+u−2+2(u−u−1)2​−13(u−u−1) 的分母,令其等于零
解 u2=0:u=0
u2=0
使用法则 xn=0⇒x=0
u=0
u=0
以下点无定义u=0
将不在定义域的点与解相综合:
u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
u≈−0.12310…,u≈−0.72075…,u≈1.38742…,u≈8.12310…
代回 u=ex,求解 x
解 ex=−0.12310…:x∈R无解
ex=−0.12310…
af(x) 对于 x不能为零或负值∈Rx∈R无解
解 ex=−0.72075…:x∈R无解
ex=−0.72075…
af(x) 对于 x不能为零或负值∈Rx∈R无解
解 ex=1.38742…:x=ln(1.38742…)
ex=1.38742…
使用指数运算法则
ex=1.38742…
若 f(x)=g(x),则 ln(f(x))=ln(g(x))ln(ex)=ln(1.38742…)
使用对数计算法则: ln(ea)=aln(ex)=xx=ln(1.38742…)
x=ln(1.38742…)
解 ex=8.12310…:x=ln(8.12310…)
ex=8.12310…
使用指数运算法则
ex=8.12310…
若 f(x)=g(x),则 ln(f(x))=ln(g(x))ln(ex)=ln(8.12310…)
使用对数计算法则: ln(ea)=aln(ex)=xx=ln(8.12310…)
x=ln(8.12310…)
x=ln(1.38742…),x=ln(8.12310…)
x=ln(1.38742…),x=ln(8.12310…)

作图

Sorry, your browser does not support this application
查看交互式图形

流行的例子

sin(3x-pi/4)=1(1-tan^2(A))/(1+tan^2(A))=1sin(2x)-0.8=0tan(a)=sqrt(15/7),sin(a)2cos^2(θ)+sin(θ)=2
学习工具人工智能数学求解器AI Chat工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序Symbolab Math Solver API
公司关于 Symbolab日志帮助
合法的隐私权条款Cookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024