Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(a)=-((5sqrt(11)))/((18))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(a)=−(18)(511​)​

Solution

NoSolutionfora∈R
Solution steps
sin2(a)=−(18)(511​)​
Solve by substitution
sin2(a)=−18511​​
Let: sin(a)=uu2=−18511​​
u2=−18511​​:u=i6411​10​​,u=−i6411​10​​
u2=−18511​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−18511​​​,u=−−18511​​​
Simplify −18511​​​:i6411​10​​
−18511​​​
Apply radical rule: −a​=−1​a​−18511​​​=−1​18511​​​=−1​18511​​​
Apply imaginary number rule: −1​=i=i18511​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥018511​​​=18​511​​​=i18​511​​​
18​=32​
18​
Prime factorization of 18:2⋅32
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
=2⋅32
=32⋅2​
Apply radical rule: nab​=na​nb​=2​32​
Apply radical rule: nan​=a32​=3=32​
=i32​511​​​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥0511​​=5​11​​=i32​5​11​​​
11​​:411​
Apply radical rule: a​=a21​=(1121​)21​
Apply exponent rule: (ab)c=abc=1121​⋅21​
21​⋅21​=41​
21​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅1​
Multiply the numbers: 1⋅1=1=2⋅21​
Multiply the numbers: 2⋅2=4=41​
=1141​
an1​=na​=411​
=i32​5​411​​
32​5​411​​=610​411​​
32​5​411​​
Multiply by the conjugate 2​2​​=32​2​5​411​2​​
5​411​2​=10​411​
5​411​2​
Apply radical rule: a​b​=a⋅b​5​2​=5⋅2​=411​5⋅2​
Multiply the numbers: 5⋅2=10=10​411​
32​2​=6
32​2​
Apply radical rule: a​a​=a2​2​=2=3⋅2
Multiply the numbers: 3⋅2=6=6
=610​411​​
=i610​411​​
Rewrite i610​411​​ in standard complex form: 610​411​​i
i610​411​​
610​411​​=32​5​411​​
610​411​​
Factor 10​:2​5​
Factor 10=2⋅5=2⋅5​
Apply radical rule: nab​=na​nb​=2​5​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅32​5​411​​
Cancel 2⋅32​5​411​​:2​⋅35​411​​
2⋅32​5​411​​
Apply radical rule: na​=an1​2​=221​=2⋅3221​5​411​​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=3⋅2−21​+15​411​​
Subtract the numbers: 1−21​=21​=3⋅221​5​411​​
Apply radical rule: an1​=na​221​=2​=32​5​411​​
=2​⋅35​411​​
=i32​5​411​​
Multiply fractions: a⋅cb​=ca⋅b​=2​⋅35​411​i​
32​5​411​​=610​411​​
32​5​411​​
Multiply by the conjugate 2​2​​=32​2​5​411​2​​
5​411​2​=10​411​
5​411​2​
Apply radical rule: a​b​=a⋅b​5​2​=5⋅2​=411​5⋅2​
Multiply the numbers: 5⋅2=10=10​411​
32​2​=6
32​2​
Apply radical rule: a​a​=a2​2​=2=3⋅2
Multiply the numbers: 3⋅2=6=6
=610​411​​
=610​411​​i
=610​411​​i
Simplify −−18511​​​:−i6411​10​​
−−18511​​​
Simplify −18511​​​:i32​5​411​​
−18511​​​
Apply radical rule: −a​=−1​a​−18511​​​=−1​18511​​​=−1​18511​​​
Apply imaginary number rule: −1​=i=i18511​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥018511​​​=18​511​​​=i18​511​​​
18​=32​
18​
Prime factorization of 18:2⋅32
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
=2⋅32
=32⋅2​
Apply radical rule: nab​=na​nb​=2​32​
Apply radical rule: nan​=a32​=3=32​
=i32​511​​​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥0511​​=5​11​​=i32​5​11​​​
11​​:411​
Apply radical rule: a​=a21​=(1121​)21​
Apply exponent rule: (ab)c=abc=1121​⋅21​
21​⋅21​=41​
21​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅1​
Multiply the numbers: 1⋅1=1=2⋅21​
Multiply the numbers: 2⋅2=4=41​
=1141​
an1​=na​=411​
=i32​5​411​​
=−i32​5​411​​
32​5​411​​=610​411​​
32​5​411​​
Multiply by the conjugate 2​2​​=32​2​5​411​2​​
5​411​2​=10​411​
5​411​2​
Apply radical rule: a​b​=a⋅b​5​2​=5⋅2​=411​5⋅2​
Multiply the numbers: 5⋅2=10=10​411​
32​2​=6
32​2​
Apply radical rule: a​a​=a2​2​=2=3⋅2
Multiply the numbers: 3⋅2=6=6
=610​411​​
=−i610​411​​
Rewrite −i610​411​​ in standard complex form: −610​411​​i
−i610​411​​
610​411​​=32​5​411​​
610​411​​
Factor 10​:2​5​
Factor 10=2⋅5=2⋅5​
Apply radical rule: nab​=na​nb​=2​5​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅32​5​411​​
Cancel 2⋅32​5​411​​:2​⋅35​411​​
2⋅32​5​411​​
Apply radical rule: na​=an1​2​=221​=2⋅3221​5​411​​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=3⋅2−21​+15​411​​
Subtract the numbers: 1−21​=21​=3⋅221​5​411​​
Apply radical rule: an1​=na​221​=2​=32​5​411​​
=2​⋅35​411​​
=−i32​5​411​​
Multiply fractions: a⋅cb​=ca⋅b​=−2​⋅35​411​i​
−32​5​411​​=−610​411​​
−32​5​411​​
Multiply by the conjugate 2​2​​=−32​2​5​411​2​​
5​411​2​=10​411​
5​411​2​
Apply radical rule: a​b​=a⋅b​5​2​=5⋅2​=411​5⋅2​
Multiply the numbers: 5⋅2=10=10​411​
32​2​=6
32​2​
Apply radical rule: a​a​=a2​2​=2=3⋅2
Multiply the numbers: 3⋅2=6=6
=−610​411​​
=−610​411​​i
=−610​411​​i
u=i6411​10​​,u=−i6411​10​​
Substitute back u=sin(a)sin(a)=i6411​10​​,sin(a)=−i6411​10​​
sin(a)=i6411​10​​,sin(a)=−i6411​10​​
sin(a)=i6411​10​​:No Solution
sin(a)=i6411​10​​
NoSolution
sin(a)=−i6411​10​​:No Solution
sin(a)=−i6411​10​​
NoSolution
Combine all the solutionsNoSolutionfora∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3.87sin((2pi(t+101.75))/(365))+11.7=142sin(2x)=sqrt(3),0<= x<= 2picosh(2x)+sinh^2(x)-13sinh(x)=-3sin(3x-pi/4)=1(1-tan^2(A))/(1+tan^2(A))=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^2(a)=-((5sqrt(11)))/((18)) ?

    The general solution for sin^2(a)=-((5sqrt(11)))/((18)) is No Solution for a\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024