Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin((75pi)/(11))=sin((xpi)/(11))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(1175π​)=sin(11xπ​)

Solution

x=2+22n,x=9+22n
+1
Degrees
x=114.59155…∘+1260.50714…∘n,x=515.66201…∘+1260.50714…∘n
Solution steps
sin(1175π​)=sin(11xπ​)
Switch sidessin(11xπ​)=sin(1175π​)
Apply trig inverse properties
sin(11xπ​)=sin(1175π​)
General solutions for sin(11xπ​)=sin(1175π​)sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn11xπ​=arcsin(sin(1175π​))+2πn,11xπ​=π−arcsin(sin(1175π​))+2πn
11xπ​=arcsin(sin(1175π​))+2πn,11xπ​=π−arcsin(sin(1175π​))+2πn
Solve 11xπ​=arcsin(sin(1175π​))+2πn:x=2+22n
11xπ​=arcsin(sin(1175π​))+2πn
Simplify arcsin(sin(1175π​))+2πn:112π​+2πn
arcsin(sin(1175π​))+2πn
arcsin(sin(1175π​))=112π​
arcsin(sin(1175π​))
For −2π​≤x≤2π​,arcsin(sin(x))=x
Rewrite using trig identities:sin(1175π​)=sin(119π​)
sin(1175π​)
sin(x+2π⋅k)=sin(x)
=sin(1175π​−3⋅2π)
=sin(119π​)
=arcsin(sin(119π​))
Rewrite using trig identities:sin(1175π​)=sin(112π​)
sin(1175π​)
sin(x)=sin(π−(x))
=sin(π−119π​)
=sin(112π​)
=arcsin(sin(112π​))
−2π​≤112π​≤2π​=112π​
=112π​+2πn
11xπ​=112π​+2πn
Multiply both sides by 11
11xπ​=112π​+2πn
Multiply both sides by 111111xπ​=11⋅112π​+11⋅2πn
Simplify
1111xπ​=11⋅112π​+11⋅2πn
Simplify 1111xπ​:πx
1111xπ​
Divide the numbers: 1111​=1=πx
Simplify 11⋅112π​+11⋅2πn:2π+22πn
11⋅112π​+11⋅2πn
11⋅112π​=2π
11⋅112π​
Multiply fractions: a⋅cb​=ca⋅b​=112π11​
Cancel the common factor: 11=2π
11⋅2πn=22πn
11⋅2πn
Multiply the numbers: 11⋅2=22=22πn
=2π+22πn
πx=2π+22πn
πx=2π+22πn
πx=2π+22πn
Divide both sides by π
πx=2π+22πn
Divide both sides by πππx​=π2π​+π22πn​
Simplify
ππx​=π2π​+π22πn​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π2π​+π22πn​:2+22n
π2π​+π22πn​
Cancel π2π​:2
π2π​
Cancel the common factor: π=2
=2+π22πn​
Cancel π22πn​:22n
π22πn​
Cancel the common factor: π=22n
=2+22n
x=2+22n
x=2+22n
x=2+22n
Solve 11xπ​=π−arcsin(sin(1175π​))+2πn:x=9+22n
11xπ​=π−arcsin(sin(1175π​))+2πn
Simplify π−arcsin(sin(1175π​))+2πn:π−112π​+2πn
π−arcsin(sin(1175π​))+2πn
arcsin(sin(1175π​))=112π​
arcsin(sin(1175π​))
For −2π​≤x≤2π​,arcsin(sin(x))=x
Rewrite using trig identities:sin(1175π​)=sin(119π​)
sin(1175π​)
sin(x+2π⋅k)=sin(x)
=sin(1175π​−3⋅2π)
=sin(119π​)
=arcsin(sin(119π​))
Rewrite using trig identities:sin(1175π​)=sin(112π​)
sin(1175π​)
sin(x)=sin(π−(x))
=sin(π−119π​)
=sin(112π​)
=arcsin(sin(112π​))
−2π​≤112π​≤2π​=112π​
=π−112π​+2πn
11xπ​=π−112π​+2πn
Multiply both sides by 11
11xπ​=π−112π​+2πn
Multiply both sides by 111111xπ​=11π−11⋅112π​+11⋅2πn
Simplify
1111xπ​=11π−11⋅112π​+11⋅2πn
Simplify 1111xπ​:πx
1111xπ​
Divide the numbers: 1111​=1=πx
Simplify 11π−11⋅112π​+11⋅2πn:9π+22πn
11π−11⋅112π​+11⋅2πn
11⋅112π​=2π
11⋅112π​
Multiply fractions: a⋅cb​=ca⋅b​=112π11​
Cancel the common factor: 11=2π
11⋅2πn=22πn
11⋅2πn
Multiply the numbers: 11⋅2=22=22πn
=11π−2π+22πn
Add similar elements: 11π−2π=9π=9π+22πn
πx=9π+22πn
πx=9π+22πn
πx=9π+22πn
Divide both sides by π
πx=9π+22πn
Divide both sides by πππx​=π9π​+π22πn​
Simplify
ππx​=π9π​+π22πn​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π9π​+π22πn​:9+22n
π9π​+π22πn​
Cancel π9π​:9
π9π​
Cancel the common factor: π=9
=9+π22πn​
Cancel π22πn​:22n
π22πn​
Cancel the common factor: π=22n
=9+22n
x=9+22n
x=9+22n
x=9+22n
x=2+22n,x=9+22n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)= 5/31+cos(x)=1csc(x)sec(x)=tan(x)sin^4(x)=1-cos^4(x)sqrt(3)tan(3x)+sqrt(3)=0,0<= x<= 180

Frequently Asked Questions (FAQ)

  • What is the general solution for sin((75pi)/(11))=sin((xpi)/(11)) ?

    The general solution for sin((75pi)/(11))=sin((xpi)/(11)) is x=2+22n,x=9+22n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024