Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of y=4x+5
inverse\:y=4x+5
symmetry y=-x-7
symmetry\:y=-x-7
inverse of f(x)=(2x-1)/(2x+5)
inverse\:f(x)=\frac{2x-1}{2x+5}
inverse of (-2)/(x+2)
inverse\:\frac{-2}{x+2}
inverse of f(x)= 3/4
inverse\:f(x)=\frac{3}{4}
range of f(x)=((x))/((x^{(2))-1)}
range\:f(x)=\frac{(x)}{(x^{(2)}-1)}
inverse of (3x)/(8+x)
inverse\:\frac{3x}{8+x}
parity tan(x/2)
parity\:\tan(\frac{x}{2})
intercepts of f(x)=x^2-6x+10
intercepts\:f(x)=x^{2}-6x+10
slope ofintercept y-5=-3x
slopeintercept\:y-5=-3x
asymptotes of f(x)=(x-5)/(3x-1)
asymptotes\:f(x)=\frac{x-5}{3x-1}
perpendicular y=-9
perpendicular\:y=-9
simplify (7.7)(2.4)
simplify\:(7.7)(2.4)
asymptotes of f(x)=2^x-1
asymptotes\:f(x)=2^{x}-1
midpoint (3/7 ,-5/6),(-11/14 , 3/5)
midpoint\:(\frac{3}{7},-\frac{5}{6}),(-\frac{11}{14},\frac{3}{5})
inverse of f(x)=-e^{-x+8}
inverse\:f(x)=-e^{-x+8}
domain of f(y)=1
domain\:f(y)=1
inverse of f(x)=sqrt(20.25-(x+2.5)^2)+2
inverse\:f(x)=\sqrt{20.25-(x+2.5)^{2}}+2
midpoint (-4,-9),(-8,1)
midpoint\:(-4,-9),(-8,1)
inflection ln(5-3x^2)
inflection\:\ln(5-3x^{2})
domain of f(x)=12x
domain\:f(x)=12x
range of (3+4x)/(1-5x)
range\:\frac{3+4x}{1-5x}
asymptotes of f(x)=((5x-1))/((-1+5x))
asymptotes\:f(x)=\frac{(5x-1)}{(-1+5x)}
symmetry y=x^2-2x-24
symmetry\:y=x^{2}-2x-24
domain of f(x)=sqrt(x^2+x-12)
domain\:f(x)=\sqrt{x^{2}+x-12}
domain of f(x)=sqrt(2x+7)
domain\:f(x)=\sqrt{2x+7}
intercepts of f(x)=x^3-x^2-9x+9
intercepts\:f(x)=x^{3}-x^{2}-9x+9
domain of f(x)=(5x^3-9)/(x^3+13x^2+42x)
domain\:f(x)=\frac{5x^{3}-9}{x^{3}+13x^{2}+42x}
f(x)=4^x
f(x)=4^{x}
midpoint (8,-5),(4,3)
midpoint\:(8,-5),(4,3)
domain of 2^{x-2}
domain\:2^{x-2}
distance (12,5),(-12,-2)
distance\:(12,5),(-12,-2)
inverse of f(x)=10*((43+x)/(4000))
inverse\:f(x)=10\cdot\:(\frac{43+x}{4000})
domain of 3(4x-1)+5
domain\:3(4x-1)+5
inverse of f(x)=x^3+7
inverse\:f(x)=x^{3}+7
asymptotes of f(x)=((2x-1))/((x-7))
asymptotes\:f(x)=\frac{(2x-1)}{(x-7)}
domain of sqrt(1+1/x)
domain\:\sqrt{1+\frac{1}{x}}
slope ofintercept 12y-3x=-72
slopeintercept\:12y-3x=-72
extreme f(x)=7+4x^2
extreme\:f(x)=7+4x^{2}
simplify (-8.7)(0.1)
simplify\:(-8.7)(0.1)
domain of f(x)=x^2-14x+53
domain\:f(x)=x^{2}-14x+53
domain of sqrt((36-x^2)/(x+3))
domain\:\sqrt{\frac{36-x^{2}}{x+3}}
asymptotes of f(x)=(-3)/(x^2)
asymptotes\:f(x)=\frac{-3}{x^{2}}
asymptotes of f(x)= x/(x^2+18)
asymptotes\:f(x)=\frac{x}{x^{2}+18}
domain of f(x)=(6x)/(x^2-1)
domain\:f(x)=\frac{6x}{x^{2}-1}
distance (1,5),(9,8)
distance\:(1,5),(9,8)
distance (-6,8),(-3,9)
distance\:(-6,8),(-3,9)
inverse of x^{2/3}
inverse\:x^{\frac{2}{3}}
range of-6\sqrt[3]{x}
range\:-6\sqrt[3]{x}
inverse of f(x)= x/5+3
inverse\:f(x)=\frac{x}{5}+3
range of f(x)=x^2-2x-8
range\:f(x)=x^{2}-2x-8
asymptotes of (x+1)/((x-3)^2)
asymptotes\:\frac{x+1}{(x-3)^{2}}
critical f(x)=3y^4-12y^2
critical\:f(x)=3y^{4}-12y^{2}
inverse of f(x)=(sqrt(7y+637))/7-3
inverse\:f(x)=\frac{\sqrt{7y+637}}{7}-3
intercepts of f(x)=(0.33)^x
intercepts\:f(x)=(0.33)^{x}
inverse of f(x)=e^{2x}+1
inverse\:f(x)=e^{2x}+1
domain of f(x)=(3x+7)/(6x)
domain\:f(x)=\frac{3x+7}{6x}
inverse of f(x)=(x-2)/2
inverse\:f(x)=\frac{x-2}{2}
periodicity of f(x)=4sin(1/pi x-2)+8
periodicity\:f(x)=4\sin(\frac{1}{π}x-2)+8
intercepts of f(x)=2x^2+5x-3
intercepts\:f(x)=2x^{2}+5x-3
asymptotes of f(x)=(x/(x^2+4))
asymptotes\:f(x)=(\frac{x}{x^{2}+4})
intercepts of f(x)=(-5x)/(3x+5)
intercepts\:f(x)=\frac{-5x}{3x+5}
slope ofintercept x-4y=4
slopeintercept\:x-4y=4
inverse of y=e^x+2e^{2x}
inverse\:y=e^{x}+2e^{2x}
parity f(x)=|x|+1
parity\:f(x)=\left|x\right|+1
asymptotes of f(x)= 1/((x+4)^2)
asymptotes\:f(x)=\frac{1}{(x+4)^{2}}
symmetry x^2-y=6
symmetry\:x^{2}-y=6
asymptotes of f(x)=((x^2+1))/(x^2+2)
asymptotes\:f(x)=\frac{(x^{2}+1)}{x^{2}+2}
domain of x^2-6x+5
domain\:x^{2}-6x+5
domain of 5x-6
domain\:5x-6
critical f(x)=x^6+6
critical\:f(x)=x^{6}+6
slope ofintercept 5x+4y=1
slopeintercept\:5x+4y=1
inflection f(x)=(x-4)^3
inflection\:f(x)=(x-4)^{3}
shift y=-sin(5x)
shift\:y=-\sin(5x)
inflection f(x)= x/(x+7)
inflection\:f(x)=\frac{x}{x+7}
domain of 2^x-3
domain\:2^{x}-3
inflection 14(x-4)(x+10)
inflection\:14(x-4)(x+10)
domain of log_{2}(x-2)
domain\:\log_{2}(x-2)
midpoint (-3,-5),(1,-3)
midpoint\:(-3,-5),(1,-3)
critical f(x)= 1/((x^2-4))
critical\:f(x)=\frac{1}{(x^{2}-4)}
domain of f(x)=(sqrt(x-1))/(x-3)
domain\:f(x)=\frac{\sqrt{x-1}}{x-3}
asymptotes of sec((2pi)/7 x)-2
asymptotes\:\sec(\frac{2π}{7}x)-2
inverse of f(x)=(81)/(x^2)
inverse\:f(x)=\frac{81}{x^{2}}
domain of f(x)=(sqrt(x+2))^2-6
domain\:f(x)=(\sqrt{x+2})^{2}-6
range of 2x^2-8
range\:2x^{2}-8
simplify (-6.4)(-9.12)
simplify\:(-6.4)(-9.12)
y=x^2+4
y=x^{2}+4
shift cot(x)
shift\:\cot(x)
monotone f(x)=x^{4/5}
monotone\:f(x)=x^{\frac{4}{5}}
extreme f(x)=-x^3+3x^2-3x+1
extreme\:f(x)=-x^{3}+3x^{2}-3x+1
parity f(x)=-4x^6+6+x^4
parity\:f(x)=-4x^{6}+6+x^{4}
intercepts of f(x)=3x^2+1
intercepts\:f(x)=3x^{2}+1
symmetry y=(9x)/(x^2+4)
symmetry\:y=\frac{9x}{x^{2}+4}
asymptotes of f(x)= x/(x^2-5x+4)
asymptotes\:f(x)=\frac{x}{x^{2}-5x+4}
domain of f(x)= 5/(4/x-1)
domain\:f(x)=\frac{5}{\frac{4}{x}-1}
range of 2x(x-4)+7
range\:2x(x-4)+7
distance (-5,-2),(-8,3)
distance\:(-5,-2),(-8,3)
extreme f(x)=ln(2-3x^2)
extreme\:f(x)=\ln(2-3x^{2})
inverse of f(x)=-2x^2-1
inverse\:f(x)=-2x^{2}-1
distance (-5,3),(10,0)
distance\:(-5,3),(10,0)
1
..
80
81
82
83
84
..
839