Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
slope ofintercept 4x+24y=-96
slopeintercept\:4x+24y=-96
inverse of sqrt(x-8)
inverse\:\sqrt{x-8}
asymptotes of f(x)=(4x^2)/(x-8)
asymptotes\:f(x)=\frac{4x^{2}}{x-8}
slope ofintercept y= 2/3 x+1
slopeintercept\:y=\frac{2}{3}x+1
range of f(x)=3
range\:f(x)=3
domain of f(x)=e^x+2
domain\:f(x)=e^{x}+2
range of f(x)=((9(x-7)))/(|x-7|)
range\:f(x)=\frac{(9(x-7))}{\left|x-7\right|}
slope of 4x-5y=0
slope\:4x-5y=0
domain of (6-3x)/(x-10)
domain\:\frac{6-3x}{x-10}
intercepts of ((x^2+3x))/((3x+1)^2)
intercepts\:\frac{(x^{2}+3x)}{(3x+1)^{2}}
extreme 3x^4-4x^3-12x^2+1
extreme\:3x^{4}-4x^{3}-12x^{2}+1
asymptotes of (2x)/(x-1)
asymptotes\:\frac{2x}{x-1}
asymptotes of f(x)=4tan(x+pi/(20))
asymptotes\:f(x)=4\tan(x+\frac{π}{20})
inflection x^{1/3}(x+4)
inflection\:x^{\frac{1}{3}}(x+4)
perpendicular y=3x-1,(3,2)
perpendicular\:y=3x-1,(3,2)
inverse of f(x)=(-9-7x)/3
inverse\:f(x)=\frac{-9-7x}{3}
domain of ((5+3x))/2
domain\:\frac{(5+3x)}{2}
asymptotes of f(x)=sec((3x)/5)
asymptotes\:f(x)=\sec(\frac{3x}{5})
inverse of f(x)=x-2 1/2
inverse\:f(x)=x-2\frac{1}{2}
range of sqrt(1/x)-1
range\:\sqrt{\frac{1}{x}}-1
domain of (x^2-4x)^2-4(x^2-4x)
domain\:(x^{2}-4x)^{2}-4(x^{2}-4x)
critical f(x)=(x^2+8x-9)^2
critical\:f(x)=(x^{2}+8x-9)^{2}
line (10,-3),(2,-4)
line\:(10,-3),(2,-4)
asymptotes of f(x)=(3x-2)/(x+1)
asymptotes\:f(x)=\frac{3x-2}{x+1}
inverse of f(x)=5x^2+10
inverse\:f(x)=5x^{2}+10
inverse of x^2-4x-6
inverse\:x^{2}-4x-6
domain of f(x)=5x+2
domain\:f(x)=5x+2
intercepts of f(x)=-x^2+2x-5
intercepts\:f(x)=-x^{2}+2x-5
domain of-2x+8
domain\:-2x+8
domain of f(x)=2e^x+1
domain\:f(x)=2e^{x}+1
inverse of f(x)=x+4/3
inverse\:f(x)=x+\frac{4}{3}
asymptotes of f(x)= x/(x-1)
asymptotes\:f(x)=\frac{x}{x-1}
range of sqrt(x^2-3)
range\:\sqrt{x^{2}-3}
domain of f(x)= 9/(\frac{1){x-3}+1}
domain\:f(x)=\frac{9}{\frac{1}{x-3}+1}
inverse of 5-2x
inverse\:5-2x
parity f(x)=sqrt(6x^2+1)
parity\:f(x)=\sqrt{6x^{2}+1}
parity f(x)=4x+5
parity\:f(x)=4x+5
range of f(x)=2x^2-1
range\:f(x)=2x^{2}-1
domain of f(x)=x+16
domain\:f(x)=x+16
critical f(x)=x^4+4x^3-2
critical\:f(x)=x^{4}+4x^{3}-2
range of f(x)=2x^2+20x+48
range\:f(x)=2x^{2}+20x+48
intercepts of (-2x-9)/(4x-19)
intercepts\:\frac{-2x-9}{4x-19}
asymptotes of f(x)=(3-3x)/(x-5)
asymptotes\:f(x)=\frac{3-3x}{x-5}
domain of sqrt(-x+9)
domain\:\sqrt{-x+9}
range of (x+1)^2
range\:(x+1)^{2}
inverse of f(x)=(sqrt(3x+2))/4
inverse\:f(x)=\frac{\sqrt{3x+2}}{4}
critical f(x)=x^3-x^2-x+2
critical\:f(x)=x^{3}-x^{2}-x+2
critical f(x)=-32t+30
critical\:f(x)=-32t+30
parity f(x)=sqrt(2x^2+1)
parity\:f(x)=\sqrt{2x^{2}+1}
monotone f(x)=-x^3+3x^2
monotone\:f(x)=-x^{3}+3x^{2}
inverse of f(x)=3x-9
inverse\:f(x)=3x-9
parity f(x)=2
parity\:f(x)=2
intercepts of f(x)=-x^2+16
intercepts\:f(x)=-x^{2}+16
range of sqrt(x+8)
range\:\sqrt{x+8}
perpendicular 4y-x=7
perpendicular\:4y-x=7
inverse of y=ln(x-3)+6
inverse\:y=\ln(x-3)+6
midpoint (3,4),(8,-4)
midpoint\:(3,4),(8,-4)
range of 3x^2+5
range\:3x^{2}+5
domain of f(x)=3(x-1)^2-2
domain\:f(x)=3(x-1)^{2}-2
inverse of x-7
inverse\:x-7
y=x^2-x-2
y=x^{2}-x-2
critical f(x)=(3x+1)/(3x)
critical\:f(x)=\frac{3x+1}{3x}
inverse of ln(397.5)
inverse\:\ln(397.5)
inverse of f(x)=(y^2+3)/(3y^2)
inverse\:f(x)=\frac{y^{2}+3}{3y^{2}}
extreme x^3+4x+5
extreme\:x^{3}+4x+5
asymptotes of f(x)=(x^2-x+6)/(x^2-x-20)
asymptotes\:f(x)=\frac{x^{2}-x+6}{x^{2}-x-20}
inverse of-x^2-3
inverse\:-x^{2}-3
domain of f(x)=sqrt(17-x)
domain\:f(x)=\sqrt{17-x}
slope ofintercept 3
slopeintercept\:3
domain of ln(x)+ln(5-x)
domain\:\ln(x)+\ln(5-x)
inverse of 8x^3+2
inverse\:8x^{3}+2
line (-2,-2),(2,5)
line\:(-2,-2),(2,5)
inverse of f(x)=x^2-13
inverse\:f(x)=x^{2}-13
intercepts of (x^2+4)/(x^2-1)
intercepts\:\frac{x^{2}+4}{x^{2}-1}
midpoint (-4,4),(-2,2)
midpoint\:(-4,4),(-2,2)
extreme f(x)=4xsqrt(36-x^2)
extreme\:f(x)=4x\sqrt{36-x^{2}}
asymptotes of f(x)=4x
asymptotes\:f(x)=4x
inverse of f(x)=2-sqrt(3+x)
inverse\:f(x)=2-\sqrt{3+x}
domain of f(x)=((x^2-2x+4))/(x-2)
domain\:f(x)=\frac{(x^{2}-2x+4)}{x-2}
domain of (sqrt(x))/(2x-5)
domain\:\frac{\sqrt{x}}{2x-5}
perpendicular y=6x-1
perpendicular\:y=6x-1
critical 2x^4-30x^2
critical\:2x^{4}-30x^{2}
slope of 8x-4y=16
slope\:8x-4y=16
\begin{pmatrix}1&-6&\end{pmatrix}\begin{pmatrix}3&-2&\end{pmatrix}
extreme 1/3 x^3+3x^2+5x
extreme\:\frac{1}{3}x^{3}+3x^{2}+5x
periodicity of f(x)=-4cos(2x)
periodicity\:f(x)=-4\cos(2x)
periodicity of f(x)= 1/5 cos(3x-pi)
periodicity\:f(x)=\frac{1}{5}\cos(3x-π)
domain of f(x)=(9x-3)/(x-1)
domain\:f(x)=\frac{9x-3}{x-1}
intercepts of f(x)=2x^2+3
intercepts\:f(x)=2x^{2}+3
parity f(x)=x^3+4
parity\:f(x)=x^{3}+4
critical f(x)=(x^2)/(x-3)
critical\:f(x)=\frac{x^{2}}{x-3}
domain of f(x)=sqrt(6+3)
domain\:f(x)=\sqrt{6+3}
parallel 5x-5y=-10(-4.1)
parallel\:5x-5y=-10(-4.1)
inverse of f(x)=(3x-7)/4
inverse\:f(x)=\frac{3x-7}{4}
extreme f(x)=4x-(196)/x ,1<= x<= 9
extreme\:f(x)=4x-\frac{196}{x},1\le\:x\le\:9
extreme (x-1)/(x^2+2x+6)
extreme\:\frac{x-1}{x^{2}+2x+6}
inverse of f(x)=x^2+x
inverse\:f(x)=x^{2}+x
inverse of f(x)=3(x+1)^2-4
inverse\:f(x)=3(x+1)^{2}-4
inverse of y=2x^2-3
inverse\:y=2x^{2}-3
domain of sqrt(2x+6)
domain\:\sqrt{2x+6}
1
..
108
109
110
111
112
..
839