Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-6sin(x)-5cos(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−6sin(x)−5cos(x)=2

Solution

x=2.70581…+2πn,x=2π−0.95369…+2πn
+1
Degrees
x=155.03164…∘+360∘n,x=305.35720…∘+360∘n
Solution steps
−6sin(x)−5cos(x)=2
Add 5cos(x) to both sides−6sin(x)=2+5cos(x)
Square both sides(−6sin(x))2=(2+5cos(x))2
Subtract (2+5cos(x))2 from both sides36sin2(x)−4−20cos(x)−25cos2(x)=0
Rewrite using trig identities
−4−20cos(x)−25cos2(x)+36sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−4−20cos(x)−25cos2(x)+36(1−cos2(x))
Simplify −4−20cos(x)−25cos2(x)+36(1−cos2(x)):−61cos2(x)−20cos(x)+32
−4−20cos(x)−25cos2(x)+36(1−cos2(x))
Expand 36(1−cos2(x)):36−36cos2(x)
36(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=36,b=1,c=cos2(x)=36⋅1−36cos2(x)
Multiply the numbers: 36⋅1=36=36−36cos2(x)
=−4−20cos(x)−25cos2(x)+36−36cos2(x)
Simplify −4−20cos(x)−25cos2(x)+36−36cos2(x):−61cos2(x)−20cos(x)+32
−4−20cos(x)−25cos2(x)+36−36cos2(x)
Group like terms=−20cos(x)−25cos2(x)−36cos2(x)−4+36
Add similar elements: −25cos2(x)−36cos2(x)=−61cos2(x)=−20cos(x)−61cos2(x)−4+36
Add/Subtract the numbers: −4+36=32=−61cos2(x)−20cos(x)+32
=−61cos2(x)−20cos(x)+32
=−61cos2(x)−20cos(x)+32
32−20cos(x)−61cos2(x)=0
Solve by substitution
32−20cos(x)−61cos2(x)=0
Let: cos(x)=u32−20u−61u2=0
32−20u−61u2=0:u=−612(5+357​)​,u=612(357​−5)​
32−20u−61u2=0
Write in the standard form ax2+bx+c=0−61u2−20u+32=0
Solve with the quadratic formula
−61u2−20u+32=0
Quadratic Equation Formula:
For a=−61,b=−20,c=32u1,2​=2(−61)−(−20)±(−20)2−4(−61)⋅32​​
u1,2​=2(−61)−(−20)±(−20)2−4(−61)⋅32​​
(−20)2−4(−61)⋅32​=1257​
(−20)2−4(−61)⋅32​
Apply rule −(−a)=a=(−20)2+4⋅61⋅32​
Apply exponent rule: (−a)n=an,if n is even(−20)2=202=202+4⋅61⋅32​
Multiply the numbers: 4⋅61⋅32=7808=202+7808​
202=400=400+7808​
Add the numbers: 400+7808=8208=8208​
Prime factorization of 8208:24⋅33⋅19
8208
8208divides by 28208=4104⋅2=2⋅4104
4104divides by 24104=2052⋅2=2⋅2⋅2052
2052divides by 22052=1026⋅2=2⋅2⋅2⋅1026
1026divides by 21026=513⋅2=2⋅2⋅2⋅2⋅513
513divides by 3513=171⋅3=2⋅2⋅2⋅2⋅3⋅171
171divides by 3171=57⋅3=2⋅2⋅2⋅2⋅3⋅3⋅57
57divides by 357=19⋅3=2⋅2⋅2⋅2⋅3⋅3⋅3⋅19
2,3,19 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅3⋅3⋅3⋅19
=24⋅33⋅19
=24⋅33⋅19​
Apply exponent rule: ab+c=ab⋅ac=24⋅32⋅3⋅19​
Apply radical rule: nab​=na​nb​=24​32​3⋅19​
Apply radical rule: nam​=anm​24​=224​=22=2232​3⋅19​
Apply radical rule: nan​=a32​=3=22⋅33⋅19​
Refine=1257​
u1,2​=2(−61)−(−20)±1257​​
Separate the solutionsu1​=2(−61)−(−20)+1257​​,u2​=2(−61)−(−20)−1257​​
u=2(−61)−(−20)+1257​​:−612(5+357​)​
2(−61)−(−20)+1257​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6120+1257​​
Multiply the numbers: 2⋅61=122=−12220+1257​​
Apply the fraction rule: −ba​=−ba​=−12220+1257​​
Cancel 12220+1257​​:612(5+357​)​
12220+1257​​
Factor 20+1257​:4(5+357​)
20+1257​
Rewrite as=4⋅5+4⋅357​
Factor out common term 4=4(5+357​)
=1224(5+357​)​
Cancel the common factor: 2=612(5+357​)​
=−612(5+357​)​
u=2(−61)−(−20)−1257​​:612(357​−5)​
2(−61)−(−20)−1257​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6120−1257​​
Multiply the numbers: 2⋅61=122=−12220−1257​​
Apply the fraction rule: −b−a​=ba​20−1257​=−(1257​−20)=1221257​−20​
Factor 1257​−20:4(357​−5)
1257​−20
Rewrite as=4⋅357​−4⋅5
Factor out common term 4=4(357​−5)
=1224(357​−5)​
Cancel the common factor: 2=612(357​−5)​
The solutions to the quadratic equation are:u=−612(5+357​)​,u=612(357​−5)​
Substitute back u=cos(x)cos(x)=−612(5+357​)​,cos(x)=612(357​−5)​
cos(x)=−612(5+357​)​,cos(x)=612(357​−5)​
cos(x)=−612(5+357​)​:x=arccos(−612(5+357​)​)+2πn,x=−arccos(−612(5+357​)​)+2πn
cos(x)=−612(5+357​)​
Apply trig inverse properties
cos(x)=−612(5+357​)​
General solutions for cos(x)=−612(5+357​)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−612(5+357​)​)+2πn,x=−arccos(−612(5+357​)​)+2πn
x=arccos(−612(5+357​)​)+2πn,x=−arccos(−612(5+357​)​)+2πn
cos(x)=612(357​−5)​:x=arccos(612(357​−5)​)+2πn,x=2π−arccos(612(357​−5)​)+2πn
cos(x)=612(357​−5)​
Apply trig inverse properties
cos(x)=612(357​−5)​
General solutions for cos(x)=612(357​−5)​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(612(357​−5)​)+2πn,x=2π−arccos(612(357​−5)​)+2πn
x=arccos(612(357​−5)​)+2πn,x=2π−arccos(612(357​−5)​)+2πn
Combine all the solutionsx=arccos(−612(5+357​)​)+2πn,x=−arccos(−612(5+357​)​)+2πn,x=arccos(612(357​−5)​)+2πn,x=2π−arccos(612(357​−5)​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into −6sin(x)−5cos(x)=2
Remove the ones that don't agree with the equation.
Check the solution arccos(−612(5+357​)​)+2πn:True
arccos(−612(5+357​)​)+2πn
Plug in n=1arccos(−612(5+357​)​)+2π1
For −6sin(x)−5cos(x)=2plug inx=arccos(−612(5+357​)​)+2π1−6sin(arccos(−612(5+357​)​)+2π1)−5cos(arccos(−612(5+357​)​)+2π1)=2
Refine2=2
⇒True
Check the solution −arccos(−612(5+357​)​)+2πn:False
−arccos(−612(5+357​)​)+2πn
Plug in n=1−arccos(−612(5+357​)​)+2π1
For −6sin(x)−5cos(x)=2plug inx=−arccos(−612(5+357​)​)+2π1−6sin(−arccos(−612(5+357​)​)+2π1)−5cos(−arccos(−612(5+357​)​)+2π1)=2
Refine7.06541…=2
⇒False
Check the solution arccos(612(357​−5)​)+2πn:False
arccos(612(357​−5)​)+2πn
Plug in n=1arccos(612(357​−5)​)+2π1
For −6sin(x)−5cos(x)=2plug inx=arccos(612(357​−5)​)+2π1−6sin(arccos(612(357​−5)​)+2π1)−5cos(arccos(612(357​−5)​)+2π1)=2
Refine−7.78672…=2
⇒False
Check the solution 2π−arccos(612(357​−5)​)+2πn:True
2π−arccos(612(357​−5)​)+2πn
Plug in n=12π−arccos(612(357​−5)​)+2π1
For −6sin(x)−5cos(x)=2plug inx=2π−arccos(612(357​−5)​)+2π1−6sin(2π−arccos(612(357​−5)​)+2π1)−5cos(2π−arccos(612(357​−5)​)+2π1)=2
Refine2=2
⇒True
x=arccos(−612(5+357​)​)+2πn,x=2π−arccos(612(357​−5)​)+2πn
Show solutions in decimal formx=2.70581…+2πn,x=2π−0.95369…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)+cos^2(x)=22sin^2(x)+sin^2(x)+cos^2(x)=1sin^2(x)+3cos(x)-1=0cos((3x-7)/2)=03tan^2(x)= 8/(sin^2(x))

Frequently Asked Questions (FAQ)

  • What is the general solution for -6sin(x)-5cos(x)=2 ?

    The general solution for -6sin(x)-5cos(x)=2 is x=2.70581…+2pin,x=2pi-0.95369…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024