Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan^2(x)= 8/(sin^2(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan2(x)=sin2(x)8​

Solution

x=1.07640…+2πn,x=2π−1.07640…+2πn,x=2.06518…+2πn,x=−2.06518…+2πn
+1
Degrees
x=61.67333…∘+360∘n,x=298.32666…∘+360∘n,x=118.32666…∘+360∘n,x=−118.32666…∘+360∘n
Solution steps
3tan2(x)=sin2(x)8​
Subtract sin2(x)8​ from both sides3tan2(x)−sin2(x)8​=0
Simplify 3tan2(x)−sin2(x)8​:sin2(x)3tan2(x)sin2(x)−8​
3tan2(x)−sin2(x)8​
Convert element to fraction: 3tan2(x)=sin2(x)3tan2(x)sin2(x)​=sin2(x)3tan2(x)sin2(x)​−sin2(x)8​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(x)3tan2(x)sin2(x)−8​
sin2(x)3tan2(x)sin2(x)−8​=0
g(x)f(x)​=0⇒f(x)=03tan2(x)sin2(x)−8=0
Rewrite using trig identities
−8+3sin2(x)tan2(x)
tan(x)=−tan(π−x)
tan(x)
Use the following property: tan(θ)=−tan(−θ)tan(x)=−tan(−x)=−tan(−x)
Apply the periodicity of tan: tan(π+θ)=tan(θ)−tan(−x)=−tan(π−x)=−tan(π−x)
=−8+3sin2(x)(−tan(π−x))2
Apply exponent rule: (−a)n=an,if n is even(−tan(−x+π))2=tan2(π−x)=−8+3sin2(x)tan2(π−x)
−8+3sin2(x)tan2(−x+π)=0
Factor −8+3sin2(x)tan2(−x+π):(3​sin(x)tan(−x+π)+22​)(3​sin(x)tan(−x+π)−22​)
−8+3sin2(x)tan2(−x+π)
Rewrite −8+3sin2(x)tan2(−x+π) as −(8​)2+(3​sin(x)tan(−x+π))2
−8+3sin2(x)tan2(−x+π)
Apply radical rule: a=(a​)28=(8​)2=−(8​)2+3sin2(x)tan2(−x+π)
Apply radical rule: a=(a​)23=(3​)2=−(8​)2+(3​)2sin2(x)tan2(−x+π)
Apply exponent rule: ambm=(ab)m(3​)2sin2(x)tan2(−x+π)=(3​sin(x)tan(−x+π))2=−(8​)2+(3​sin(x)tan(−x+π))2
=−(8​)2+(3​sin(x)tan(−x+π))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)−(8​)2+(3​sin(x)tan(−x+π))2=(3​sin(x)tan(−x+π)+8​)(3​sin(x)tan(−x+π)−8​)=(3​sin(x)tan(−x+π)+8​)(3​sin(x)tan(−x+π)−8​)
Refine=(3​sin(x)tan(−x+π)+22​)(3​sin(x)tan(−x+π)−22​)
(3​sin(x)tan(−x+π)+22​)(3​sin(x)tan(−x+π)−22​)=0
Solving each part separately3​sin(x)tan(−x+π)+22​=0or3​sin(x)tan(−x+π)−22​=0
3​sin(x)tan(−x+π)+22​=0:x=arccos(33​(−2​+5​)​)+2πn,x=2π−arccos(33​(−2​+5​)​)+2πn
3​sin(x)tan(−x+π)+22​=0
Rewrite using trig identities
3​sin(x)tan(−x+π)+22​=0
Rewrite using trig identities
tan(−x+π)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(−x+π)sin(−x+π)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(π−x)sin(π)cos(x)−cos(π)sin(x)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​
Simplify cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​:−cos(x)sin(x)​
cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​
sin(π)cos(x)−cos(π)sin(x)=sin(x)
sin(π)cos(x)−cos(π)sin(x)
sin(π)cos(x)=0
sin(π)cos(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅cos(x)
Apply rule 0⋅a=0=0
cos(π)sin(x)=−sin(x)
cos(π)sin(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=−sin(x)
=0−(−sin(x))
Refine=sin(x)
=cos(π)cos(x)+sin(π)sin(x)sin(x)​
cos(π)cos(x)+sin(π)sin(x)=−cos(x)
cos(π)cos(x)+sin(π)sin(x)
cos(π)cos(x)=−cos(x)
cos(π)cos(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅cos(x)
Multiply: 1⋅cos(x)=cos(x)=−cos(x)
=−cos(x)+sin(π)sin(x)
sin(π)sin(x)=0
sin(π)sin(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
=−cos(x)+0
−cos(x)+0=−cos(x)=−cos(x)
=−cos(x)sin(x)​
Apply the fraction rule: −ba​=−ba​=−cos(x)sin(x)​
=−cos(x)sin(x)​
3​sin(x)(−cos(x)sin(x)​)+22​=0
Simplify 3​sin(x)(−cos(x)sin(x)​)+22​:−cos(x)3​sin2(x)​+22​
3​sin(x)(−cos(x)sin(x)​)+22​
Remove parentheses: (−a)=−a=−3​sin(x)cos(x)sin(x)​+22​
3​sin(x)cos(x)sin(x)​=cos(x)3​sin2(x)​
3​sin(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)3​sin(x)​
sin(x)3​sin(x)=3​sin2(x)
sin(x)3​sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=3​sin1+1(x)
Add the numbers: 1+1=2=3​sin2(x)
=cos(x)3​sin2(x)​
=−cos(x)3​sin2(x)​+22​
−cos(x)3​sin2(x)​+22​=0
−cos(x)3​sin2(x)​+22​=0
Simplify −cos(x)3​sin2(x)​+22​:cos(x)−3​sin2(x)+22​cos(x)​
−cos(x)3​sin2(x)​+22​
Convert element to fraction: 22​=cos(x)2⋅2​cos(x)​=−cos(x)3​sin2(x)​+cos(x)22​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−3​sin2(x)+22​cos(x)​
cos(x)−3​sin2(x)+22​cos(x)​=0
g(x)f(x)​=0⇒f(x)=0−3​sin2(x)+22​cos(x)=0
Rewrite using trig identities
−sin2(x)3​+2cos(x)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−(1−cos2(x))3​+2cos(x)2​
−(1−cos2(x))3​+2cos(x)2​=0
Solve by substitution
−(1−cos2(x))3​+2cos(x)2​=0
Let: cos(x)=u−(1−u2)3​+2u2​=0
−(1−u2)3​+2u2​=0:u=33​(−2​+5​)​,u=−33​(2​+5​)​
−(1−u2)3​+2u2​=0
Expand −(1−u2)3​+2u2​:−3​+3​u2+22​u
−(1−u2)3​+2u2​
=−3​(1−u2)+22​u
Expand −3​(1−u2):−3​+3​u2
−3​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−3​,b=1,c=u2=−3​⋅1−(−3​)u2
Apply minus-plus rules−(−a)=a=−1⋅3​+3​u2
Multiply: 1⋅3​=3​=−3​+3​u2
=−3​+3​u2+2u2​
=−3​+3​u2+22​u
−3​+3​u2+22​u=0
Write in the standard form ax2+bx+c=03​u2+22​u−3​=0
Solve with the quadratic formula
3​u2+22​u−3​=0
Quadratic Equation Formula:
For a=3​,b=22​,c=−3​u1,2​=23​−22​±(22​)2−43​(−3​)​​
u1,2​=23​−22​±(22​)2−43​(−3​)​​
(22​)2−43​(−3​)​=25​
(22​)2−43​(−3​)​
Apply rule −(−a)=a=(22​)2+43​3​​
(22​)2=23
(22​)2
Apply exponent rule: (a⋅b)n=anbn=22(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=22⋅2
Apply exponent rule: ab⋅ac=ab+c22⋅2=22+1=22+1
Add the numbers: 2+1=3=23
43​3​=12
43​3​
Apply radical rule: a​a​=a3​3​=3=4⋅3
Multiply the numbers: 4⋅3=12=12
=23+12​
23=8=8+12​
Add the numbers: 8+12=20=20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: nab​=na​nb​=5​22​
Apply radical rule: nan​=a22​=2=25​
u1,2​=23​−22​±25​​
Separate the solutionsu1​=23​−22​+25​​,u2​=23​−22​−25​​
u=23​−22​+25​​:33​(−2​+5​)​
23​−22​+25​​
Factor out common term 2=23​2(−2​+5​)​
Divide the numbers: 22​=1=3​−2​+5​​
Rationalize 3​−2​+5​​:33​(5​−2​)​
3​−2​+5​​
Multiply by the conjugate 3​3​​=3​3​(−2​+5​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(−2​+5​)​
=33​(5​−2​)​
=33​(−2​+5​)​
u=23​−22​−25​​:−33​(2​+5​)​
23​−22​−25​​
Factor out common term 2=−23​2(2​+5​)​
Divide the numbers: 22​=1=−3​2​+5​​
Rationalize −3​2​+5​​:−33​(2​+5​)​
−3​2​+5​​
Multiply by the conjugate 3​3​​=−3​3​(2​+5​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​(2​+5​)​
=−33​(2​+5​)​
The solutions to the quadratic equation are:u=33​(−2​+5​)​,u=−33​(2​+5​)​
Substitute back u=cos(x)cos(x)=33​(−2​+5​)​,cos(x)=−33​(2​+5​)​
cos(x)=33​(−2​+5​)​,cos(x)=−33​(2​+5​)​
cos(x)=33​(−2​+5​)​:x=arccos(33​(−2​+5​)​)+2πn,x=2π−arccos(33​(−2​+5​)​)+2πn
cos(x)=33​(−2​+5​)​
Apply trig inverse properties
cos(x)=33​(−2​+5​)​
General solutions for cos(x)=33​(−2​+5​)​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(33​(−2​+5​)​)+2πn,x=2π−arccos(33​(−2​+5​)​)+2πn
x=arccos(33​(−2​+5​)​)+2πn,x=2π−arccos(33​(−2​+5​)​)+2πn
cos(x)=−33​(2​+5​)​:No Solution
cos(x)=−33​(2​+5​)​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(33​(−2​+5​)​)+2πn,x=2π−arccos(33​(−2​+5​)​)+2πn
3​sin(x)tan(−x+π)−22​=0:x=arccos(33​(2​−5​)​)+2πn,x=−arccos(33​(2​−5​)​)+2πn
3​sin(x)tan(−x+π)−22​=0
Rewrite using trig identities
3​sin(x)tan(−x+π)−22​=0
Rewrite using trig identities
tan(−x+π)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(−x+π)sin(−x+π)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(π−x)sin(π)cos(x)−cos(π)sin(x)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​
Simplify cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​:−cos(x)sin(x)​
cos(π)cos(x)+sin(π)sin(x)sin(π)cos(x)−cos(π)sin(x)​
sin(π)cos(x)−cos(π)sin(x)=sin(x)
sin(π)cos(x)−cos(π)sin(x)
sin(π)cos(x)=0
sin(π)cos(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅cos(x)
Apply rule 0⋅a=0=0
cos(π)sin(x)=−sin(x)
cos(π)sin(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=−sin(x)
=0−(−sin(x))
Refine=sin(x)
=cos(π)cos(x)+sin(π)sin(x)sin(x)​
cos(π)cos(x)+sin(π)sin(x)=−cos(x)
cos(π)cos(x)+sin(π)sin(x)
cos(π)cos(x)=−cos(x)
cos(π)cos(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅cos(x)
Multiply: 1⋅cos(x)=cos(x)=−cos(x)
=−cos(x)+sin(π)sin(x)
sin(π)sin(x)=0
sin(π)sin(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
=−cos(x)+0
−cos(x)+0=−cos(x)=−cos(x)
=−cos(x)sin(x)​
Apply the fraction rule: −ba​=−ba​=−cos(x)sin(x)​
=−cos(x)sin(x)​
3​sin(x)(−cos(x)sin(x)​)−22​=0
Simplify 3​sin(x)(−cos(x)sin(x)​)−22​:−cos(x)3​sin2(x)​−22​
3​sin(x)(−cos(x)sin(x)​)−22​
Remove parentheses: (−a)=−a=−3​sin(x)cos(x)sin(x)​−22​
3​sin(x)cos(x)sin(x)​=cos(x)3​sin2(x)​
3​sin(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)3​sin(x)​
sin(x)3​sin(x)=3​sin2(x)
sin(x)3​sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=3​sin1+1(x)
Add the numbers: 1+1=2=3​sin2(x)
=cos(x)3​sin2(x)​
=−cos(x)3​sin2(x)​−22​
−cos(x)3​sin2(x)​−22​=0
−cos(x)3​sin2(x)​−22​=0
Simplify −cos(x)3​sin2(x)​−22​:cos(x)−3​sin2(x)−22​cos(x)​
−cos(x)3​sin2(x)​−22​
Convert element to fraction: 22​=cos(x)2⋅2​cos(x)​=−cos(x)3​sin2(x)​−cos(x)22​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−3​sin2(x)−22​cos(x)​
cos(x)−3​sin2(x)−22​cos(x)​=0
g(x)f(x)​=0⇒f(x)=0−3​sin2(x)−22​cos(x)=0
Rewrite using trig identities
−sin2(x)3​−2cos(x)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−(1−cos2(x))3​−2cos(x)2​
−(1−cos2(x))3​−2cos(x)2​=0
Solve by substitution
−(1−cos2(x))3​−2cos(x)2​=0
Let: cos(x)=u−(1−u2)3​−2u2​=0
−(1−u2)3​−2u2​=0:u=33​(2​+5​)​,u=33​(2​−5​)​
−(1−u2)3​−2u2​=0
Expand −(1−u2)3​−2u2​:−3​+3​u2−22​u
−(1−u2)3​−2u2​
=−3​(1−u2)−22​u
Expand −3​(1−u2):−3​+3​u2
−3​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−3​,b=1,c=u2=−3​⋅1−(−3​)u2
Apply minus-plus rules−(−a)=a=−1⋅3​+3​u2
Multiply: 1⋅3​=3​=−3​+3​u2
=−3​+3​u2−2u2​
=−3​+3​u2−22​u
−3​+3​u2−22​u=0
Write in the standard form ax2+bx+c=03​u2−22​u−3​=0
Solve with the quadratic formula
3​u2−22​u−3​=0
Quadratic Equation Formula:
For a=3​,b=−22​,c=−3​u1,2​=23​−(−22​)±(−22​)2−43​(−3​)​​
u1,2​=23​−(−22​)±(−22​)2−43​(−3​)​​
(−22​)2−43​(−3​)​=25​
(−22​)2−43​(−3​)​
Apply rule −(−a)=a=(−22​)2+43​3​​
(−22​)2=23
(−22​)2
Apply exponent rule: (−a)n=an,if n is even(−22​)2=(22​)2=(22​)2
Apply exponent rule: (a⋅b)n=anbn=22(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=22⋅2
Apply exponent rule: ab⋅ac=ab+c22⋅2=22+1=22+1
Add the numbers: 2+1=3=23
43​3​=12
43​3​
Apply radical rule: a​a​=a3​3​=3=4⋅3
Multiply the numbers: 4⋅3=12=12
=23+12​
23=8=8+12​
Add the numbers: 8+12=20=20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: nab​=na​nb​=5​22​
Apply radical rule: nan​=a22​=2=25​
u1,2​=23​−(−22​)±25​​
Separate the solutionsu1​=23​−(−22​)+25​​,u2​=23​−(−22​)−25​​
u=23​−(−22​)+25​​:33​(2​+5​)​
23​−(−22​)+25​​
Apply rule −(−a)=a=23​22​+25​​
Factor out common term 2=23​2(2​+5​)​
Divide the numbers: 22​=1=3​2​+5​​
Rationalize 3​2​+5​​:33​(2​+5​)​
3​2​+5​​
Multiply by the conjugate 3​3​​=3​3​(2​+5​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(2​+5​)​
=33​(2​+5​)​
u=23​−(−22​)−25​​:33​(2​−5​)​
23​−(−22​)−25​​
Apply rule −(−a)=a=23​22​−25​​
Factor out common term 2=23​2(2​−5​)​
Divide the numbers: 22​=1=3​2​−5​​
Rationalize 3​2​−5​​:33​(2​−5​)​
3​2​−5​​
Multiply by the conjugate 3​3​​=3​3​(2​−5​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(2​−5​)​
=33​(2​−5​)​
The solutions to the quadratic equation are:u=33​(2​+5​)​,u=33​(2​−5​)​
Substitute back u=cos(x)cos(x)=33​(2​+5​)​,cos(x)=33​(2​−5​)​
cos(x)=33​(2​+5​)​,cos(x)=33​(2​−5​)​
cos(x)=33​(2​+5​)​:No Solution
cos(x)=33​(2​+5​)​
−1≤cos(x)≤1NoSolution
cos(x)=33​(2​−5​)​:x=arccos(33​(2​−5​)​)+2πn,x=−arccos(33​(2​−5​)​)+2πn
cos(x)=33​(2​−5​)​
Apply trig inverse properties
cos(x)=33​(2​−5​)​
General solutions for cos(x)=33​(2​−5​)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(33​(2​−5​)​)+2πn,x=−arccos(33​(2​−5​)​)+2πn
x=arccos(33​(2​−5​)​)+2πn,x=−arccos(33​(2​−5​)​)+2πn
Combine all the solutionsx=arccos(33​(2​−5​)​)+2πn,x=−arccos(33​(2​−5​)​)+2πn
Combine all the solutionsx=arccos(33​(−2​+5​)​)+2πn,x=2π−arccos(33​(−2​+5​)​)+2πn,x=arccos(33​(2​−5​)​)+2πn,x=−arccos(33​(2​−5​)​)+2πn
Show solutions in decimal formx=1.07640…+2πn,x=2π−1.07640…+2πn,x=2.06518…+2πn,x=−2.06518…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)+sin^{22}(x)+sin^{23}(x)=15sin(1.75x)=1.4cos(a-5)=0.675cos(7a)=sin(a-6)sin^5(x)+2cos^2(x)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024