Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(x)cos^2(x)-1+2cos^2(x)-sin(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x)cos2(x)−1+2cos2(x)−sin(x)=0

Solution

x=23π​+2πn,x=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn
+1
Degrees
x=270∘+360∘n,x=225∘+360∘n,x=315∘+360∘n,x=45∘+360∘n,x=135∘+360∘n
Solution steps
2sin(x)cos2(x)−1+2cos2(x)−sin(x)=0
Rewrite using trig identities
−1−sin(x)+2cos2(x)+2cos2(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−1−sin(x)+2(1−sin2(x))+2(1−sin2(x))sin(x)
Simplify −1−sin(x)+2(1−sin2(x))+2(1−sin2(x))sin(x):sin(x)−2sin3(x)−2sin2(x)+1
−1−sin(x)+2(1−sin2(x))+2(1−sin2(x))sin(x)
=−1−sin(x)+2(1−sin2(x))+2sin(x)(1−sin2(x))
Expand 2(1−sin2(x)):2−2sin2(x)
2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=sin2(x)=2⋅1−2sin2(x)
Multiply the numbers: 2⋅1=2=2−2sin2(x)
=−1−sin(x)+2−2sin2(x)+2(1−sin2(x))sin(x)
Expand 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)⋅1−2sin(x)sin2(x)
=2⋅1⋅sin(x)−2sin2(x)sin(x)
Simplify 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1⋅sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1⋅sin(x)
Multiply the numbers: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=−1−sin(x)+2−2sin2(x)+2sin(x)−2sin3(x)
Simplify −1−sin(x)+2−2sin2(x)+2sin(x)−2sin3(x):sin(x)−2sin3(x)−2sin2(x)+1
−1−sin(x)+2−2sin2(x)+2sin(x)−2sin3(x)
Group like terms=−sin(x)−2sin2(x)+2sin(x)−2sin3(x)−1+2
Add similar elements: −sin(x)+2sin(x)=sin(x)=sin(x)−2sin2(x)−2sin3(x)−1+2
Add/Subtract the numbers: −1+2=1=sin(x)−2sin3(x)−2sin2(x)+1
=sin(x)−2sin3(x)−2sin2(x)+1
=sin(x)−2sin3(x)−2sin2(x)+1
1+sin(x)−2sin2(x)−2sin3(x)=0
Solve by substitution
1+sin(x)−2sin2(x)−2sin3(x)=0
Let: sin(x)=u1+u−2u2−2u3=0
1+u−2u2−2u3=0:u=−1,u=−22​​,u=22​​
1+u−2u2−2u3=0
Write in the standard form an​xn+…+a1​x+a0​=0−2u3−2u2+u+1=0
Factor −2u3−2u2+u+1:−(u+1)(2​u+1)(2​u−1)
−2u3−2u2+u+1
Factor out common term −1=−(2u3+2u2−u−1)
Factor 2u3+2u2−u−1:(u+1)(2​u+1)(2​u−1)
2u3+2u2−u−1
=(2u3+2u2)+(−u−1)
Factor out −1from −u−1:−(u+1)
−u−1
Factor out common term −1=−(u+1)
Factor out 2u2from 2u3+2u2:2u2(u+1)
2u3+2u2
Apply exponent rule: ab+c=abacu3=uu2=2uu2+2u2
Factor out common term 2u2=2u2(u+1)
=−(u+1)+2u2(u+1)
Factor out common term u+1=(u+1)(2u2−1)
Factor 2u2−1:(2​u+1)(2​u−1)
2u2−1
Rewrite 2u2−1 as (2​u)2−12
2u2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2u2−1
Rewrite 1 as 12=(2​)2u2−12
Apply exponent rule: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=(u+1)(2​u+1)(2​u−1)
=−(u+1)(2​u+1)(2​u−1)
−(u+1)(2​u+1)(2​u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0or2​u+1=0or2​u−1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve 2​u+1=0:u=−22​​
2​u+1=0
Move 1to the right side
2​u+1=0
Subtract 1 from both sides2​u+1−1=0−1
Simplify2​u=−1
2​u=−1
Divide both sides by 2​
2​u=−1
Divide both sides by 2​2​2​u​=2​−1​
Simplify
2​2​u​=2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=−22​​
u=−22​​
u=−22​​
Solve 2​u−1=0:u=22​​
2​u−1=0
Move 1to the right side
2​u−1=0
Add 1 to both sides2​u−1+1=0+1
Simplify2​u=1
2​u=1
Divide both sides by 2​
2​u=1
Divide both sides by 2​2​2​u​=2​1​
Simplify
2​2​u​=2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u=22​​
u=22​​
u=22​​
The solutions areu=−1,u=−22​​,u=22​​
Substitute back u=sin(x)sin(x)=−1,sin(x)=−22​​,sin(x)=22​​
sin(x)=−1,sin(x)=−22​​,sin(x)=22​​
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)=−22​​:x=45π​+2πn,x=47π​+2πn
sin(x)=−22​​
General solutions for sin(x)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
sin(x)=22​​:x=4π​+2πn,x=43π​+2πn
sin(x)=22​​
General solutions for sin(x)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Combine all the solutionsx=23π​+2πn,x=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(b)=3solvefor a,sin(a+b/2)=cos(c/2)tan(x)-cot(x)=2cot^2(x)cot((-x+3n)/4)=0sin(x)+sin^2(x)+sin^3(x)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024