Lời Giải
Máy Tính Tích PhânMáy Tính Đạo HàmMáy Tính Đại SốMáy Tính Ma TrậnHơn...
Vẽ đồ thị
Biểu đồ đườngĐồ thị hàm mũĐồ thị bậc haiĐồ thị sinHơn...
Máy tính
Máy tính BMIMáy tính lãi képMáy tính tỷ lệ phần trămMáy tính gia tốcHơn...
Hình học
Máy tính Định Lý PytagoMáy Tính Diện Tích Hình TrònMáy tính tam giác cânMáy tính tam giácHơn...
Công cụ
Sổ ghi chépNhómBảng Ghi ChúBảng tínhThực HànhXác thực
vi
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Phổ biến Lượng giác >

sin(x)+sin^2(x)+sin^3(x)=1

  • Tiền Đại Số
  • Đại số
  • Tiền Giải Tích
  • Giải tích
  • Các hàm số
  • Đại số tuyến tính
  • Lượng giác
  • Thống kê
  • Hóa học
  • Quy đổi

Lời Giải

sin(x)+sin2(x)+sin3(x)=1

Lời Giải

x=0.57482…+2πn,x=π−0.57482…+2πn
+1
Độ
x=32.93512…∘+360∘n,x=147.06487…∘+360∘n
Các bước giải pháp
sin(x)+sin2(x)+sin3(x)=1
Giải quyết bằng cách thay thế
sin(x)+sin2(x)+sin3(x)=1
Cho: sin(x)=uu+u2+u3=1
u+u2+u3=1:u≈0.54368…
u+u2+u3=1
Di chuyển 1sang bên trái
u+u2+u3=1
Trừ 1 cho cả hai bênu+u2+u3−1=1−1
Rút gọnu+u2+u3−1=0
u+u2+u3−1=0
Viết ở dạng chuẩn an​xn+…+a1​x+a0​=0u3+u2+u−1=0
Tìm một lời giải cho u3+u2+u−1=0 bằng Newton-Raphson:u≈0.54368…
u3+u2+u−1=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=u3+u2+u−1
Tìm f′(u):3u2+2u+1
dud​(u3+u2+u−1)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=dud​(u3)+dud​(u2)+dudu​−dud​(1)
dud​(u3)=3u2
dud​(u3)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=3u3−1
Rút gọn=3u2
dud​(u2)=2u
dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=2u2−1
Rút gọn=2u
dudu​=1
dudu​
Áp dụng đạo hàm chung: dudu​=1=1
dud​(1)=0
dud​(1)
Đạo hàm của một hằng số: dxd​(a)=0=0
=3u2+2u+1−0
Rút gọn=3u2+2u+1
Cho u0​=1Tính un+1​ cho đến Δun+1​<0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=13+12+1−1=2f′(u0​)=3⋅12+2⋅1+1=6u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=0.55555…:Δu2​=0.11111…
f(u1​)=0.66666…3+0.66666…2+0.66666…−1=0.40740…f′(u1​)=3⋅0.66666…2+2⋅0.66666…+1=3.66666…u2​=0.55555…
Δu2​=∣0.55555…−0.66666…∣=0.11111…Δu2​=0.11111…
u3​=0.54381…:Δu3​=0.01174…
f(u2​)=0.55555…3+0.55555…2+0.55555…−1=0.03566…f′(u2​)=3⋅0.55555…2+2⋅0.55555…+1=3.03703…u3​=0.54381…
Δu3​=∣0.54381…−0.55555…∣=0.01174…Δu3​=0.01174…
u4​=0.54368…:Δu4​=0.00012…
f(u3​)=0.54381…3+0.54381…2+0.54381…−1=0.00036…f′(u3​)=3⋅0.54381…2+2⋅0.54381…+1=2.97481…u4​=0.54368…
Δu4​=∣0.54368…−0.54381…∣=0.00012…Δu4​=0.00012…
u5​=0.54368…:Δu5​=1.34021E−8
f(u4​)=0.54368…3+0.54368…2+0.54368…−1=3.98601E−8f′(u4​)=3⋅0.54368…2+2⋅0.54368…+1=2.97417…u5​=0.54368…
Δu5​=∣0.54368…−0.54368…∣=1.34021E−8Δu5​=1.34021E−8
u≈0.54368…
Áp dụng phép chia số lớn:u−0.54368…u3+u2+u−1​=u2+1.54368…u+1.83928…
u2+1.54368…u+1.83928…≈0
Tìm một lời giải cho u2+1.54368…u+1.83928…=0 bằng Newton-Raphson:Không có nghiệm cho u∈R
u2+1.54368…u+1.83928…=0
Định nghĩa xấp xỉ Newton-Raphson
f(u)=u2+1.54368…u+1.83928…
Tìm f′(u):2u+1.54368…
dud​(u2+1.54368…u+1.83928…)
Áp dụng quy tắc Đạo hàm của một Tổng: (f±g)′=f′±g′=dud​(u2)+dud​(1.54368…u)+dud​(1.83928…)
dud​(u2)=2u
dud​(u2)
Áp dụng Quy tắc Lũy thừa: dxd​(xa)=a⋅xa−1=2u2−1
Rút gọn=2u
dud​(1.54368…u)=1.54368…
dud​(1.54368…u)
Đưa hằng số ra ngoài: (a⋅f)′=a⋅f′=1.54368…dudu​
Áp dụng đạo hàm chung: dudu​=1=1.54368…⋅1
Rút gọn=1.54368…
dud​(1.83928…)=0
dud​(1.83928…)
Đạo hàm của một hằng số: dxd​(a)=0=0
=2u+1.54368…+0
Rút gọn=2u+1.54368…
Cho u0​=−1Tính un+1​ cho đến Δun+1​<0.000001
u1​=1.83928…:Δu1​=2.83928…
f(u0​)=(−1)2+1.54368…(−1)+1.83928…=1.29559…f′(u0​)=2(−1)+1.54368…=−0.45631…u1​=1.83928…
Δu1​=∣1.83928…−(−1)∣=2.83928…Δu1​=2.83928…
u2​=0.29559…:Δu2​=1.54368…
f(u1​)=1.83928…2+1.54368…⋅1.83928…+1.83928…=8.06154…f′(u1​)=2⋅1.83928…+1.54368…=5.22226…u2​=0.29559…
Δu2​=∣0.29559…−1.83928…∣=1.54368…Δu2​=1.54368…
u3​=−0.82061…:Δu3​=1.11620…
f(u2​)=0.29559…2+1.54368…⋅0.29559…+1.83928…=2.38297…f′(u2​)=2⋅0.29559…+1.54368…=2.13488…u3​=−0.82061…
Δu3​=∣−0.82061…−0.29559…∣=1.11620…Δu3​=1.11620…
u4​=11.95386…:Δu4​=12.77447…
f(u3​)=(−0.82061…)2+1.54368…(−0.82061…)+1.83928…=1.24592…f′(u3​)=2(−0.82061…)+1.54368…=−0.09753…u4​=11.95386…
Δu4​=∣11.95386…−(−0.82061…)∣=12.77447…Δu4​=12.77447…
u5​=5.54214…:Δu5​=6.41171…
f(u4​)=11.95386…2+1.54368…⋅11.95386…+1.83928…=163.18717…f′(u4​)=2⋅11.95386…+1.54368…=25.45141…u5​=5.54214…
Δu5​=∣5.54214…−11.95386…∣=6.41171…Δu5​=6.41171…
u6​=2.28667…:Δu6​=3.25547…
f(u5​)=5.54214…2+1.54368…⋅5.54214…+1.83928…=41.11006…f′(u5​)=2⋅5.54214…+1.54368…=12.62798…u6​=2.28667…
Δu6​=∣2.28667…−5.54214…∣=3.25547…Δu6​=3.25547…
u7​=0.55412…:Δu7​=1.73255…
f(u6​)=2.28667…2+1.54368…⋅2.28667…+1.83928…=10.59809…f′(u6​)=2⋅2.28667…+1.54368…=6.11704…u7​=0.55412…
Δu7​=∣0.55412…−2.28667…∣=1.73255…Δu7​=1.73255…
u8​=−0.57777…:Δu8​=1.13190…
f(u7​)=0.55412…2+1.54368…⋅0.55412…+1.83928…=3.00173…f′(u7​)=2⋅0.55412…+1.54368…=2.65193…u8​=−0.57777…
Δu8​=∣−0.57777…−0.55412…∣=1.13190…Δu8​=1.13190…
u9​=−3.87872…:Δu9​=3.30094…
f(u8​)=(−0.57777…)2+1.54368…(−0.57777…)+1.83928…=1.28120…f′(u8​)=2(−0.57777…)+1.54368…=0.38813…u9​=−3.87872…
Δu9​=∣−3.87872…−(−0.57777…)∣=3.30094…Δu9​=3.30094…
u10​=−2.12515…:Δu10​=1.75356…
f(u9​)=(−3.87872…)2+1.54368…(−3.87872…)+1.83928…=10.89622…f′(u9​)=2(−3.87872…)+1.54368…=−6.21375…u10​=−2.12515…
Δu10​=∣−2.12515…−(−3.87872…)∣=1.75356…Δu10​=1.75356…
u11​=−0.98905…:Δu11​=1.13610…
f(u10​)=(−2.12515…)2+1.54368…(−2.12515…)+1.83928…=3.07499…f′(u10​)=2(−2.12515…)+1.54368…=−2.70662…u11​=−0.98905…
Δu11​=∣−0.98905…−(−2.12515…)∣=1.13610…Δu11​=1.13610…
u12​=1.98207…:Δu12​=2.97113…
f(u11​)=(−0.98905…)2+1.54368…(−0.98905…)+1.83928…=1.29072…f′(u11​)=2(−0.98905…)+1.54368…=−0.43442…u12​=1.98207…
Δu12​=∣1.98207…−(−0.98905…)∣=2.97113…Δu12​=2.97113…
u13​=0.37934…:Δu13​=1.60273…
f(u12​)=1.98207…2+1.54368…⋅1.98207…+1.83928…=8.82763…f′(u12​)=2⋅1.98207…+1.54368…=5.50784…u13​=0.37934…
Δu13​=∣0.37934…−1.98207…∣=1.60273…Δu13​=1.60273…
u14​=−0.73636…:Δu14​=1.11570…
f(u13​)=0.37934…2+1.54368…⋅0.37934…+1.83928…=2.56876…f′(u13​)=2⋅0.37934…+1.54368…=2.30236…u14​=−0.73636…
Δu14​=∣−0.73636…−0.37934…∣=1.11570…Δu14​=1.11570…
u15​=−18.27956…:Δu15​=17.54320…
f(u14​)=(−0.73636…)2+1.54368…(−0.73636…)+1.83928…=1.24480…f′(u14​)=2(−0.73636…)+1.54368…=0.07095…u15​=−18.27956…
Δu15​=∣−18.27956…−(−0.73636…)∣=17.54320…Δu15​=17.54320…
Không thể tìm được lời giải
Giải pháp làu≈0.54368…
Thay thế lại u=sin(x)sin(x)≈0.54368…
sin(x)≈0.54368…
sin(x)=0.54368…:x=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
sin(x)=0.54368…
Áp dụng tính chất nghịch đảo lượng giác
sin(x)=0.54368…
Các lời giải chung cho sin(x)=0.54368…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
x=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
Kết hợp tất cả các cách giảix=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
Hiển thị các lời giải ở dạng thập phânx=0.57482…+2πn,x=π−0.57482…+2πn

Đồ Thị

Sorry, your browser does not support this application
Xem đồ thị tương tác

Ví dụ phổ biến

(cos(a))/(1+sin(a))=sec(a)cos^2(x)+sin^2(2x)=02cos^2(x)+3sin^2(x)=242-25cos(x)=312sec^2(x)=5tan(x)
Công cụ học tậpTrình giải toán AIBảng tínhThực HànhBảng Ghi ChúMáy tínhMáy Tính Vẽ Đồ ThịMáy Tính Hình HọcXác minh giải pháp
Ứng dụngỨng dụng Symbolab (Android)Máy Tính Vẽ Đồ Thị (Android)Thực Hành (Android)Ứng dụng Symbolab (iOS)Máy Tính Vẽ Đồ Thị (iOS)Thực Hành (iOS)Tiện ích mở rộng ChromeSymbolab Math Solver API
Công tyGiới thiệu về SymbolabBlogTrợ Giúp
Hợp phápQuyền Riêng TưĐiều KhoảnChính sách cookieCài đặt cookieKhông bán hoặc chia sẻ thông tin cá nhân của tôiBản quyền, Nguyên tắc cộng đồng, DSA và các tài nguyên pháp lý khácTrung tâm pháp lý Learneo
Truyền thông xã hội
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024