Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)+sin^2(x)+sin^3(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)+sin2(x)+sin3(x)=1

Solution

x=0.57482…+2πn,x=π−0.57482…+2πn
+1
Degrees
x=32.93512…∘+360∘n,x=147.06487…∘+360∘n
Solution steps
sin(x)+sin2(x)+sin3(x)=1
Solve by substitution
sin(x)+sin2(x)+sin3(x)=1
Let: sin(x)=uu+u2+u3=1
u+u2+u3=1:u≈0.54368…
u+u2+u3=1
Move 1to the left side
u+u2+u3=1
Subtract 1 from both sidesu+u2+u3−1=1−1
Simplifyu+u2+u3−1=0
u+u2+u3−1=0
Write in the standard form an​xn+…+a1​x+a0​=0u3+u2+u−1=0
Find one solution for u3+u2+u−1=0 using Newton-Raphson:u≈0.54368…
u3+u2+u−1=0
Newton-Raphson Approximation Definition
f(u)=u3+u2+u−1
Find f′(u):3u2+2u+1
dud​(u3+u2+u−1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u3)+dud​(u2)+dudu​−dud​(1)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dudu​=1
dudu​
Apply the common derivative: dudu​=1=1
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=3u2+2u+1−0
Simplify=3u2+2u+1
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=13+12+1−1=2f′(u0​)=3⋅12+2⋅1+1=6u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=0.55555…:Δu2​=0.11111…
f(u1​)=0.66666…3+0.66666…2+0.66666…−1=0.40740…f′(u1​)=3⋅0.66666…2+2⋅0.66666…+1=3.66666…u2​=0.55555…
Δu2​=∣0.55555…−0.66666…∣=0.11111…Δu2​=0.11111…
u3​=0.54381…:Δu3​=0.01174…
f(u2​)=0.55555…3+0.55555…2+0.55555…−1=0.03566…f′(u2​)=3⋅0.55555…2+2⋅0.55555…+1=3.03703…u3​=0.54381…
Δu3​=∣0.54381…−0.55555…∣=0.01174…Δu3​=0.01174…
u4​=0.54368…:Δu4​=0.00012…
f(u3​)=0.54381…3+0.54381…2+0.54381…−1=0.00036…f′(u3​)=3⋅0.54381…2+2⋅0.54381…+1=2.97481…u4​=0.54368…
Δu4​=∣0.54368…−0.54381…∣=0.00012…Δu4​=0.00012…
u5​=0.54368…:Δu5​=1.34021E−8
f(u4​)=0.54368…3+0.54368…2+0.54368…−1=3.98601E−8f′(u4​)=3⋅0.54368…2+2⋅0.54368…+1=2.97417…u5​=0.54368…
Δu5​=∣0.54368…−0.54368…∣=1.34021E−8Δu5​=1.34021E−8
u≈0.54368…
Apply long division:u−0.54368…u3+u2+u−1​=u2+1.54368…u+1.83928…
u2+1.54368…u+1.83928…≈0
Find one solution for u2+1.54368…u+1.83928…=0 using Newton-Raphson:No Solution for u∈R
u2+1.54368…u+1.83928…=0
Newton-Raphson Approximation Definition
f(u)=u2+1.54368…u+1.83928…
Find f′(u):2u+1.54368…
dud​(u2+1.54368…u+1.83928…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u2)+dud​(1.54368…u)+dud​(1.83928…)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(1.54368…u)=1.54368…
dud​(1.54368…u)
Take the constant out: (a⋅f)′=a⋅f′=1.54368…dudu​
Apply the common derivative: dudu​=1=1.54368…⋅1
Simplify=1.54368…
dud​(1.83928…)=0
dud​(1.83928…)
Derivative of a constant: dxd​(a)=0=0
=2u+1.54368…+0
Simplify=2u+1.54368…
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=1.83928…:Δu1​=2.83928…
f(u0​)=(−1)2+1.54368…(−1)+1.83928…=1.29559…f′(u0​)=2(−1)+1.54368…=−0.45631…u1​=1.83928…
Δu1​=∣1.83928…−(−1)∣=2.83928…Δu1​=2.83928…
u2​=0.29559…:Δu2​=1.54368…
f(u1​)=1.83928…2+1.54368…⋅1.83928…+1.83928…=8.06154…f′(u1​)=2⋅1.83928…+1.54368…=5.22226…u2​=0.29559…
Δu2​=∣0.29559…−1.83928…∣=1.54368…Δu2​=1.54368…
u3​=−0.82061…:Δu3​=1.11620…
f(u2​)=0.29559…2+1.54368…⋅0.29559…+1.83928…=2.38297…f′(u2​)=2⋅0.29559…+1.54368…=2.13488…u3​=−0.82061…
Δu3​=∣−0.82061…−0.29559…∣=1.11620…Δu3​=1.11620…
u4​=11.95386…:Δu4​=12.77447…
f(u3​)=(−0.82061…)2+1.54368…(−0.82061…)+1.83928…=1.24592…f′(u3​)=2(−0.82061…)+1.54368…=−0.09753…u4​=11.95386…
Δu4​=∣11.95386…−(−0.82061…)∣=12.77447…Δu4​=12.77447…
u5​=5.54214…:Δu5​=6.41171…
f(u4​)=11.95386…2+1.54368…⋅11.95386…+1.83928…=163.18717…f′(u4​)=2⋅11.95386…+1.54368…=25.45141…u5​=5.54214…
Δu5​=∣5.54214…−11.95386…∣=6.41171…Δu5​=6.41171…
u6​=2.28667…:Δu6​=3.25547…
f(u5​)=5.54214…2+1.54368…⋅5.54214…+1.83928…=41.11006…f′(u5​)=2⋅5.54214…+1.54368…=12.62798…u6​=2.28667…
Δu6​=∣2.28667…−5.54214…∣=3.25547…Δu6​=3.25547…
u7​=0.55412…:Δu7​=1.73255…
f(u6​)=2.28667…2+1.54368…⋅2.28667…+1.83928…=10.59809…f′(u6​)=2⋅2.28667…+1.54368…=6.11704…u7​=0.55412…
Δu7​=∣0.55412…−2.28667…∣=1.73255…Δu7​=1.73255…
u8​=−0.57777…:Δu8​=1.13190…
f(u7​)=0.55412…2+1.54368…⋅0.55412…+1.83928…=3.00173…f′(u7​)=2⋅0.55412…+1.54368…=2.65193…u8​=−0.57777…
Δu8​=∣−0.57777…−0.55412…∣=1.13190…Δu8​=1.13190…
u9​=−3.87872…:Δu9​=3.30094…
f(u8​)=(−0.57777…)2+1.54368…(−0.57777…)+1.83928…=1.28120…f′(u8​)=2(−0.57777…)+1.54368…=0.38813…u9​=−3.87872…
Δu9​=∣−3.87872…−(−0.57777…)∣=3.30094…Δu9​=3.30094…
u10​=−2.12515…:Δu10​=1.75356…
f(u9​)=(−3.87872…)2+1.54368…(−3.87872…)+1.83928…=10.89622…f′(u9​)=2(−3.87872…)+1.54368…=−6.21375…u10​=−2.12515…
Δu10​=∣−2.12515…−(−3.87872…)∣=1.75356…Δu10​=1.75356…
u11​=−0.98905…:Δu11​=1.13610…
f(u10​)=(−2.12515…)2+1.54368…(−2.12515…)+1.83928…=3.07499…f′(u10​)=2(−2.12515…)+1.54368…=−2.70662…u11​=−0.98905…
Δu11​=∣−0.98905…−(−2.12515…)∣=1.13610…Δu11​=1.13610…
u12​=1.98207…:Δu12​=2.97113…
f(u11​)=(−0.98905…)2+1.54368…(−0.98905…)+1.83928…=1.29072…f′(u11​)=2(−0.98905…)+1.54368…=−0.43442…u12​=1.98207…
Δu12​=∣1.98207…−(−0.98905…)∣=2.97113…Δu12​=2.97113…
u13​=0.37934…:Δu13​=1.60273…
f(u12​)=1.98207…2+1.54368…⋅1.98207…+1.83928…=8.82763…f′(u12​)=2⋅1.98207…+1.54368…=5.50784…u13​=0.37934…
Δu13​=∣0.37934…−1.98207…∣=1.60273…Δu13​=1.60273…
u14​=−0.73636…:Δu14​=1.11570…
f(u13​)=0.37934…2+1.54368…⋅0.37934…+1.83928…=2.56876…f′(u13​)=2⋅0.37934…+1.54368…=2.30236…u14​=−0.73636…
Δu14​=∣−0.73636…−0.37934…∣=1.11570…Δu14​=1.11570…
u15​=−18.27956…:Δu15​=17.54320…
f(u14​)=(−0.73636…)2+1.54368…(−0.73636…)+1.83928…=1.24480…f′(u14​)=2(−0.73636…)+1.54368…=0.07095…u15​=−18.27956…
Δu15​=∣−18.27956…−(−0.73636…)∣=17.54320…Δu15​=17.54320…
Cannot find solution
The solution isu≈0.54368…
Substitute back u=sin(x)sin(x)≈0.54368…
sin(x)≈0.54368…
sin(x)=0.54368…:x=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
sin(x)=0.54368…
Apply trig inverse properties
sin(x)=0.54368…
General solutions for sin(x)=0.54368…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
x=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
Combine all the solutionsx=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
Show solutions in decimal formx=0.57482…+2πn,x=π−0.57482…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(cos(a))/(1+sin(a))=sec(a)cos^2(x)+sin^2(2x)=02cos^2(x)+3sin^2(x)=242-25cos(x)=312sec^2(x)=5tan(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x)+sin^2(x)+sin^3(x)=1 ?

    The general solution for sin(x)+sin^2(x)+sin^3(x)=1 is x=0.57482…+2pin,x=pi-0.57482…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024