Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan^2(b)+1)/(tan(b))=csc^2(b)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(b)tan2(b)+1​=csc2(b)

Solution

b=4π​+πn
+1
Degrees
b=45∘+180∘n
Solution steps
tan(b)tan2(b)+1​=csc2(b)
Subtract csc2(b) from both sidestan(b)tan2(b)+1​−csc2(b)=0
Simplify tan(b)tan2(b)+1​−csc2(b):tan(b)tan2(b)+1−csc2(b)tan(b)​
tan(b)tan2(b)+1​−csc2(b)
Convert element to fraction: csc2(b)=tan(b)csc2(b)tan(b)​=tan(b)tan2(b)+1​−tan(b)csc2(b)tan(b)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=tan(b)tan2(b)+1−csc2(b)tan(b)​
tan(b)tan2(b)+1−csc2(b)tan(b)​=0
g(x)f(x)​=0⇒f(x)=0tan2(b)+1−csc2(b)tan(b)=0
Rewrite using trig identities
1+tan2(b)−csc2(b)tan(b)
Use the Pythagorean identity: csc2(x)=1+cot2(x)=1+tan2(b)−(1+cot2(b))tan(b)
Use the basic trigonometric identity: tan(x)=cot(x)1​=1+(cot(b)1​)2−(1+cot2(b))cot(b)1​
Simplify 1+(cot(b)1​)2−(1+cot2(b))cot(b)1​:1+cot2(b)1​−cot(b)1+cot2(b)​
1+(cot(b)1​)2−(1+cot2(b))cot(b)1​
(cot(b)1​)2=cot2(b)1​
(cot(b)1​)2
Apply exponent rule: (ba​)c=bcac​=cot2(b)12​
Apply rule 1a=112=1=cot2(b)1​
(1+cot2(b))cot(b)1​=cot(b)1+cot2(b)​
(1+cot2(b))cot(b)1​
Multiply fractions: a⋅cb​=ca⋅b​=cot(b)1⋅(1+cot2(b))​
1⋅(1+cot2(b))=1+cot2(b)
1⋅(1+cot2(b))
Multiply: 1⋅(1+cot2(b))=(1+cot2(b))=(1+cot2(b))
Remove parentheses: (a)=a=1+cot2(b)
=cot(b)1+cot2(b)​
=1+cot2(b)1​−cot(b)cot2(b)+1​
=1+cot2(b)1​−cot(b)1+cot2(b)​
1−cot(b)1+cot2(b)​+cot2(b)1​=0
Solve by substitution
1−cot(b)1+cot2(b)​+cot2(b)1​=0
Let: cot(b)=u1−u1+u2​+u21​=0
1−u1+u2​+u21​=0:u=1,u=i,u=−i
1−u1+u2​+u21​=0
Multiply by LCM
1−u1+u2​+u21​=0
Find Least Common Multiplier of u,u2:u2
u,u2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u or u2=u2
Multiply by LCM=u21⋅u2−u1+u2​u2+u21​u2=0⋅u2
Simplify
1⋅u2−u1+u2​u2+u21​u2=0⋅u2
Simplify 1⋅u2:u2
1⋅u2
Multiply: 1⋅u2=u2=u2
Simplify −u1+u2​u2:−u(u2+1)
−u1+u2​u2
Multiply fractions: a⋅cb​=ca⋅b​=−u(1+u2)u2​
Cancel the common factor: u=−u(u2+1)
Simplify u21​u2:1
u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅u2​
Cancel the common factor: u2=1
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
u2−u(u2+1)+1=0
u2−u(u2+1)+1=0
u2−u(u2+1)+1=0
Solve u2−u(u2+1)+1=0:u=1,u=i,u=−i
u2−u(u2+1)+1=0
Expand u2−u(u2+1)+1:u2−u3−u+1
u2−u(u2+1)+1
Expand −u(u2+1):−u3−u
−u(u2+1)
Apply the distributive law: a(b+c)=ab+aca=−u,b=u2,c=1=−uu2+(−u)⋅1
Apply minus-plus rules+(−a)=−a=−u2u−1⋅u
Simplify −u2u−1⋅u:−u3−u
−u2u−1⋅u
u2u=u3
u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=u2+1
Add the numbers: 2+1=3=u3
1⋅u=u
1⋅u
Multiply: 1⋅u=u=u
=−u3−u
=−u3−u
=u2−u3−u+1
u2−u3−u+1=0
Write in the standard form an​xn+…+a1​x+b=0−u3+u2−u+1=0
Factor −u3+u2−u+1:−(u−1)(u2+1)
−u3+u2−u+1
Factor out common term −1=−(u3−u2+u−1)
Factor u3−u2+u−1:(u−1)(u2+1)
u3−u2+u−1
=(u3−u2)+(u−1)
Factor out u2from u3−u2:u2(u−1)
u3−u2
Apply exponent rule: ab+c=abacu3=uu2=uu2−u2
Factor out common term u2=u2(u−1)
=(u−1)+u2(u−1)
Factor out common term u−1=(u−1)(u2+1)
=−(u−1)(u2+1)
−(u−1)(u2+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0oru2+1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u2+1=0:u=i,u=−i
u2+1=0
Move 1to the right side
u2+1=0
Subtract 1 from both sidesu2+1−1=0−1
Simplifyu2=−1
u2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1​,u=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
u=i,u=−i
The solutions areu=1,u=i,u=−i
u=1,u=i,u=−i
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 1−u1+u2​+u21​ and compare to zero
u=0
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=i,u=−i
Substitute back u=cot(b)cot(b)=1,cot(b)=i,cot(b)=−i
cot(b)=1,cot(b)=i,cot(b)=−i
cot(b)=1:b=4π​+πn
cot(b)=1
General solutions for cot(b)=1
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
b=4π​+πn
b=4π​+πn
cot(b)=i:No Solution
cot(b)=i
NoSolution
cot(b)=−i:No Solution
cot(b)=−i
NoSolution
Combine all the solutionsb=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,r+s+6t=cos(2x+y)(tan^2(b)+1)/((tan(x)))=csc^2(b)sin(x)+sin^2(x/2)= 1/2sin^5(x)+sin^3(x)=05sin^2(x)cos(7x)-cos(7x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for (tan^2(b)+1)/(tan(b))=csc^2(b) ?

    The general solution for (tan^2(b)+1)/(tan(b))=csc^2(b) is b= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024