Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5sin^2(x)cos(7x)-cos(7x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5sin2(x)cos(7x)−cos(7x)=0

Solution

x=14π​+72πn​,x=143π​+72πn​,x=−0.46364…+2πn,x=π+0.46364…+2πn,x=0.46364…+2πn,x=π−0.46364…+2πn
+1
Degrees
x=12.85714…∘+51.42857…∘n,x=38.57142…∘+51.42857…∘n,x=−26.56505…∘+360∘n,x=206.56505…∘+360∘n,x=26.56505…∘+360∘n,x=153.43494…∘+360∘n
Solution steps
5sin2(x)cos(7x)−cos(7x)=0
Factor 5sin2(x)cos(7x)−cos(7x):cos(7x)(5​sin(x)+1)(5​sin(x)−1)
5sin2(x)cos(7x)−cos(7x)
Factor out common term cos(7x)=cos(7x)(5sin2(x)−1)
Factor 5sin2(x)−1:(5​sin(x)+1)(5​sin(x)−1)
5sin2(x)−1
Rewrite 5sin2(x)−1 as (5​sin(x))2−12
5sin2(x)−1
Apply radical rule: a=(a​)25=(5​)2=(5​)2sin2(x)−1
Rewrite 1 as 12=(5​)2sin2(x)−12
Apply exponent rule: ambm=(ab)m(5​)2sin2(x)=(5​sin(x))2=(5​sin(x))2−12
=(5​sin(x))2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(5​sin(x))2−12=(5​sin(x)+1)(5​sin(x)−1)=(5​sin(x)+1)(5​sin(x)−1)
=cos(7x)(5​sin(x)+1)(5​sin(x)−1)
cos(7x)(5​sin(x)+1)(5​sin(x)−1)=0
Solving each part separatelycos(7x)=0or5​sin(x)+1=0or5​sin(x)−1=0
cos(7x)=0:x=14π​+72πn​,x=143π​+72πn​
cos(7x)=0
General solutions for cos(7x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
7x=2π​+2πn,7x=23π​+2πn
7x=2π​+2πn,7x=23π​+2πn
Solve 7x=2π​+2πn:x=14π​+72πn​
7x=2π​+2πn
Divide both sides by 7
7x=2π​+2πn
Divide both sides by 777x​=72π​​+72πn​
Simplify
77x​=72π​​+72πn​
Simplify 77x​:x
77x​
Divide the numbers: 77​=1=x
Simplify 72π​​+72πn​:14π​+72πn​
72π​​+72πn​
72π​​=14π​
72π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅7π​
Multiply the numbers: 2⋅7=14=14π​
=14π​+72πn​
x=14π​+72πn​
x=14π​+72πn​
x=14π​+72πn​
Solve 7x=23π​+2πn:x=143π​+72πn​
7x=23π​+2πn
Divide both sides by 7
7x=23π​+2πn
Divide both sides by 777x​=723π​​+72πn​
Simplify
77x​=723π​​+72πn​
Simplify 77x​:x
77x​
Divide the numbers: 77​=1=x
Simplify 723π​​+72πn​:143π​+72πn​
723π​​+72πn​
723π​​=143π​
723π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅73π​
Multiply the numbers: 2⋅7=14=143π​
=143π​+72πn​
x=143π​+72πn​
x=143π​+72πn​
x=143π​+72πn​
x=14π​+72πn​,x=143π​+72πn​
5​sin(x)+1=0:x=arcsin(−55​​)+2πn,x=π+arcsin(55​​)+2πn
5​sin(x)+1=0
Move 1to the right side
5​sin(x)+1=0
Subtract 1 from both sides5​sin(x)+1−1=0−1
Simplify5​sin(x)=−1
5​sin(x)=−1
Divide both sides by 5​
5​sin(x)=−1
Divide both sides by 5​5​5​sin(x)​=5​−1​
Simplify
5​5​sin(x)​=5​−1​
Simplify 5​5​sin(x)​:sin(x)
5​5​sin(x)​
Cancel the common factor: 5​=sin(x)
Simplify 5​−1​:−55​​
5​−1​
Apply the fraction rule: b−a​=−ba​=−5​1​
Rationalize −5​1​:−55​​
−5​1​
Multiply by the conjugate 5​5​​=−5​5​1⋅5​​
1⋅5​=5​
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=−55​​
=−55​​
sin(x)=−55​​
sin(x)=−55​​
sin(x)=−55​​
Apply trig inverse properties
sin(x)=−55​​
General solutions for sin(x)=−55​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−55​​)+2πn,x=π+arcsin(55​​)+2πn
x=arcsin(−55​​)+2πn,x=π+arcsin(55​​)+2πn
5​sin(x)−1=0:x=arcsin(55​​)+2πn,x=π−arcsin(55​​)+2πn
5​sin(x)−1=0
Move 1to the right side
5​sin(x)−1=0
Add 1 to both sides5​sin(x)−1+1=0+1
Simplify5​sin(x)=1
5​sin(x)=1
Divide both sides by 5​
5​sin(x)=1
Divide both sides by 5​5​5​sin(x)​=5​1​
Simplify
5​5​sin(x)​=5​1​
Simplify 5​5​sin(x)​:sin(x)
5​5​sin(x)​
Cancel the common factor: 5​=sin(x)
Simplify 5​1​:55​​
5​1​
Multiply by the conjugate 5​5​​=5​5​1⋅5​​
1⋅5​=5​
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=55​​
sin(x)=55​​
sin(x)=55​​
sin(x)=55​​
Apply trig inverse properties
sin(x)=55​​
General solutions for sin(x)=55​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(55​​)+2πn,x=π−arcsin(55​​)+2πn
x=arcsin(55​​)+2πn,x=π−arcsin(55​​)+2πn
Combine all the solutionsx=14π​+72πn​,x=143π​+72πn​,x=arcsin(−55​​)+2πn,x=π+arcsin(55​​)+2πn,x=arcsin(55​​)+2πn,x=π−arcsin(55​​)+2πn
Show solutions in decimal formx=14π​+72πn​,x=143π​+72πn​,x=−0.46364…+2πn,x=π+0.46364…+2πn,x=0.46364…+2πn,x=π−0.46364…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,cos^2(x)*z^2-2cos^2(x)*z+1=0sin(a)+sin(120+a)+sin(120-a)=03sin(x)sin(x)=5cos(x)-2(cos(x)+3cos(x))/(2+2)=03tan^3(x)-tan^2(x)-tan(x)-1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024