Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(a)+sin(120+a)+sin(120-a)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(a)+sin(120∘+a)+sin(120∘−a)=0

Solution

a=120∘+180∘n
+1
Radians
a=32π​+πn
Solution steps
sin(a)+sin(120∘+a)+sin(120∘−a)=0
Rewrite using trig identities
sin(a)+sin(120∘+a)+sin(120∘−a)=0
Rewrite using trig identities
sin(120∘+a)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(120∘)cos(a)+cos(120∘)sin(a)
Simplify sin(120∘)cos(a)+cos(120∘)sin(a):23​​cos(a)−21​sin(a)
sin(120∘)cos(a)+cos(120∘)sin(a)
Simplify sin(120∘):23​​
sin(120∘)
Use the following trivial identity:sin(120∘)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=23​​cos(a)+cos(120∘)sin(a)
Simplify cos(120∘):−21​
cos(120∘)
Use the following trivial identity:cos(120∘)=−21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−21​
=23​​cos(a)−21​sin(a)
=23​​cos(a)−21​sin(a)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(120∘)cos(a)−cos(120∘)sin(a)
Simplify sin(120∘)cos(a)−cos(120∘)sin(a):23​​cos(a)+21​sin(a)
sin(120∘)cos(a)−cos(120∘)sin(a)
Simplify sin(120∘):23​​
sin(120∘)
Use the following trivial identity:sin(120∘)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=23​​cos(a)−cos(120∘)sin(a)
Simplify cos(120∘):−21​
cos(120∘)
Use the following trivial identity:cos(120∘)=−21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−21​
=23​​cos(a)−(−21​sin(a))
Apply rule −(−a)=a=23​​cos(a)+21​sin(a)
=23​​cos(a)+21​sin(a)
sin(a)+23​​cos(a)−21​sin(a)+23​​cos(a)+21​sin(a)=0
Simplify sin(a)+23​​cos(a)−21​sin(a)+23​​cos(a)+21​sin(a):sin(a)+3​cos(a)
sin(a)+23​​cos(a)−21​sin(a)+23​​cos(a)+21​sin(a)
Group like terms=−21​sin(a)+21​sin(a)+23​​cos(a)+23​​cos(a)+sin(a)
Add similar elements: 23​​cos(a)+23​​cos(a)=3​cos(a)
23​​cos(a)+23​​cos(a)
Factor out common term cos(a)=cos(a)(23​​+23​​)
23​​+23​​=3​
23​​+23​​
Apply rule ca​±cb​=ca±b​=23​+3​​
Factor 3​+3​:23​
3​+3​
Factor out common term 3​=3​(1+1)
Refine=23​
=223​​
Divide the numbers: 22​=1=3​
=3​cos(a)
=−21​sin(a)+21​sin(a)+3​cos(a)+sin(a)
Add similar elements: −21​sin(a)+21​sin(a)+sin(a)=sin(a)
−21​sin(a)+21​sin(a)+sin(a)
Factor out common term sin(a)=sin(a)(−21​+21​+1)
−21​+21​+1=1
−21​+21​+1
Convert element to fraction: 1=11​=−21​+21​+11​
Least Common Multiplier of 2,2,1:2
2,2,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 1
Compute a number comprised of factors that appear in at least one of the following:
2,2,1
=2
Multiply the numbers: 2=2=2
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2
For 11​:multiply the denominator and numerator by 211​=1⋅21⋅2​=22​
=−21​+21​+22​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1+1+2​
Refine=1
=sin(a)
=sin(a)+3​cos(a)
sin(a)+3​cos(a)=0
Divide both sides by cos(a),cos(a)=0cos(a)sin(a)+3​cos(a)​=cos(a)0​
Simplifycos(a)sin(a)​+3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(a)+3​=0
tan(a)+3​=0
Move 3​to the right side
tan(a)+3​=0
Subtract 3​ from both sidestan(a)+3​−3​=0−3​
Simplifytan(a)=−3​
tan(a)=−3​
General solutions for tan(a)=−3​
tan(x) periodicity table with 180∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​tan(x)033​​13​±∞−3​−1−33​​​​
a=120∘+180∘n
a=120∘+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin(x)sin(x)=5cos(x)-2(cos(x)+3cos(x))/(2+2)=03tan^3(x)-tan^2(x)-tan(x)-1=0cos(2x+60)=cos(x)3tan(x)-3cot(x)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(a)+sin(120+a)+sin(120-a)=0 ?

    The general solution for sin(a)+sin(120+a)+sin(120-a)=0 is a=120+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024