Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan^3(x)-tan^2(x)-tan(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan3(x)−tan2(x)−tan(x)−1=0

Solution

x=4π​+πn
+1
Degrees
x=45∘+180∘n
Solution steps
3tan3(x)−tan2(x)−tan(x)−1=0
Solve by substitution
3tan3(x)−tan2(x)−tan(x)−1=0
Let: tan(x)=u3u3−u2−u−1=0
3u3−u2−u−1=0:u=1,u=−31​+i32​​,u=−31​−i32​​
3u3−u2−u−1=0
Factor 3u3−u2−u−1:(u−1)(3u2+2u+1)
3u3−u2−u−1
Use the rational root theorem
a0​=1,an​=3
The dividers of a0​:1,The dividers of an​:1,3
Therefore, check the following rational numbers:±1,31​
11​ is a root of the expression, so factor out u−1
=(u−1)u−13u3−u2−u−1​
u−13u3−u2−u−1​=3u2+2u+1
u−13u3−u2−u−1​
Divide u−13u3−u2−u−1​:u−13u3−u2−u−1​=3u2+u−12u2−u−1​
Divide the leading coefficients of the numerator 3u3−u2−u−1
and the divisor u−1:u3u3​=3u2
Quotient=3u2
Multiply u−1 by 3u2:3u3−3u2Subtract 3u3−3u2 from 3u3−u2−u−1 to get new remainderRemainder=2u2−u−1
Thereforeu−13u3−u2−u−1​=3u2+u−12u2−u−1​
=3u2+u−12u2−u−1​
Divide u−12u2−u−1​:u−12u2−u−1​=2u+u−1u−1​
Divide the leading coefficients of the numerator 2u2−u−1
and the divisor u−1:u2u2​=2u
Quotient=2u
Multiply u−1 by 2u:2u2−2uSubtract 2u2−2u from 2u2−u−1 to get new remainderRemainder=u−1
Thereforeu−12u2−u−1​=2u+u−1u−1​
=3u2+2u+u−1u−1​
Divide u−1u−1​:u−1u−1​=1
Divide the leading coefficients of the numerator u−1
and the divisor u−1:uu​=1
Quotient=1
Multiply u−1 by 1:u−1Subtract u−1 from u−1 to get new remainderRemainder=0
Thereforeu−1u−1​=1
=3u2+2u+1
=(u−1)(3u2+2u+1)
(u−1)(3u2+2u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0or3u2+2u+1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve 3u2+2u+1=0:u=−31​+i32​​,u=−31​−i32​​
3u2+2u+1=0
Solve with the quadratic formula
3u2+2u+1=0
Quadratic Equation Formula:
For a=3,b=2,c=1u1,2​=2⋅3−2±22−4⋅3⋅1​​
u1,2​=2⋅3−2±22−4⋅3⋅1​​
Simplify 22−4⋅3⋅1​:22​i
22−4⋅3⋅1​
Multiply the numbers: 4⋅3⋅1=12=22−12​
Apply imaginary number rule: −a​=ia​=i12−22​
−22+12​=22​
−22+12​
22=4=−4+12​
Add/Subtract the numbers: −4+12=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​i
u1,2​=2⋅3−2±22​i​
Separate the solutionsu1​=2⋅3−2+22​i​,u2​=2⋅3−2−22​i​
u=2⋅3−2+22​i​:−31​+i32​​
2⋅3−2+22​i​
Multiply the numbers: 2⋅3=6=6−2+22​i​
Factor −2+22​i:2(−1+2​i)
−2+22​i
Rewrite as=−2⋅1+22​i
Factor out common term 2=2(−1+2​i)
=62(−1+2​i)​
Cancel the common factor: 2=3−1+2​i​
Rewrite 3−1+2​i​ in standard complex form: −31​+32​​i
3−1+2​i​
Apply the fraction rule: ca±b​=ca​±cb​3−1+2​i​=−31​+32​i​=−31​+32​i​
=−31​+32​​i
u=2⋅3−2−22​i​:−31​−i32​​
2⋅3−2−22​i​
Multiply the numbers: 2⋅3=6=6−2−22​i​
Factor −2−22​i:−2(1+2​i)
−2−22​i
Rewrite as=−2⋅1−22​i
Factor out common term 2=−2(1+2​i)
=−62(1+2​i)​
Cancel the common factor: 2=−31+2​i​
Rewrite −31+2​i​ in standard complex form: −31​−32​​i
−31+2​i​
Apply the fraction rule: ca±b​=ca​±cb​31+2​i​=−(31​)−(32​i​)=−(31​)−(32​i​)
Remove parentheses: (a)=a=−31​−32​i​
=−31​−32​​i
The solutions to the quadratic equation are:u=−31​+i32​​,u=−31​−i32​​
The solutions areu=1,u=−31​+i32​​,u=−31​−i32​​
Substitute back u=tan(x)tan(x)=1,tan(x)=−31​+i32​​,tan(x)=−31​−i32​​
tan(x)=1,tan(x)=−31​+i32​​,tan(x)=−31​−i32​​
tan(x)=1:x=4π​+πn
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
tan(x)=−31​+i32​​:No Solution
tan(x)=−31​+i32​​
NoSolution
tan(x)=−31​−i32​​:No Solution
tan(x)=−31​−i32​​
NoSolution
Combine all the solutionsx=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x+60)=cos(x)3tan(x)-3cot(x)-1=05sin^2(x)+6cos(x)-6=0sin^2(x)-sin(x)cos(x)-6cos^2(x)=05cos^2(x)+3sin(x)-3=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan^3(x)-tan^2(x)-tan(x)-1=0 ?

    The general solution for 3tan^3(x)-tan^2(x)-tan(x)-1=0 is x= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024